In this article, a ratiometric fluorescent biosensor for O2(•-) was developed, by employing carbon dots (C-Dots) as the reference fluorophore and hydroethidine (HE), a specific organic molecule toward O2(•-), playing the role as both specific recognition element and response signal. The hybrid fluorescent probe CD-HE only emitted at 525 nm is ascribed to C-Dots, while HE was almost nonfluorescent, upon excitation at 488 nm. However, after reaction with O2(•-), a new emission peak ascribed to the reaction products of HE and O2(•-) was clearly observed at 610 nm. Meanwhile, this peak gradually increased with the increasing concentration of O2(•-) but the emission peak at 525 nm stayed constant, leading to a ratiometric detection of O2(•-). The inorganic-organic fluorescent sensor exhibited high sensitivity, a broad dynamic linear range of ~5 × 10(-7)-1.4 × 10(-4) M, and low detection limit down to 100 nM. The present probe also showed high accuracy and excellent selectivity for O2(•-) over other reactive oxygen species (ROS), metal ions, and so on. Moreover, the C-Dot-based inorganic-organic probe demonstrated long-term stability against pH changes and continuous light illumination, good cell-permeability, and low cytotoxicity. Accordingly, the developed fluorescent biosensor was eventually applied for intracellular bioimaging and biosensing of O2(•-) changes upon oxidative stress.
Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.
The objective of this study was to target drug delivery to radiation-induced neoantigens, which include activated receptors within the tumor vasculature. These responses include posttranslational changes in pre-existing proteins, which can be discovered by phage-displayed peptide libraries administered to mice bearing irradiated tumors. Phage-displayed peptides recovered from irradiated tumors included the amino acid sequence RGDGSSV. This peptide binds to integrins within the tumor microvasculature. Immunohistochemical staining of irradiated tumors showed accumulation of fibrinogen receptor alpha(2b)beta(3) integrin. We studied tumor targeting efficiency of ligands to radiation-induced alpha(2b)beta(3). Radiopharmaceuticals were localized to irradiated tumors by use of alpha(2b)beta(3) ligands conjugated to nanoparticles and liposomes. Fibrinogen-conjugated nanoparticles bind to the radiation-activated receptor, obliterate tumor blood flow, and significantly increase regression and growth delay in irradiated tumors. Radiation-guided drug delivery to tumor blood vessels is a novel paradigm for targeted drug delivery.
Some bladder disease therapies can benefit from intravesical drug delivery, which involves direct instillation of drug into the bladder via a catheter, to attain high local concentrations of the drug with minimal systemic effects. Deguelin is a potential anticancer agent, however, its poor water solubility and neurotoxicity restrict its clinical application. To address these challenges, we investigated the promising application of deguelin in the intravesical therapy of bladder cancer by designing a novel intravesical drug delivery system for deguelin. It was found that deguelin could efficiently kill bladder cancer cells and inhibit angiogenesis. Intravesically administrated deguelin had better tolerance than systemically applied deguelin. Encapsulation of deguelin in cationic DOTAP and monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) hybrid nanoparticles (DMP) created the deguelin loaded DMP nanoparticles (D/DMP). They had a mean particle size of 35 nm and zeta potential of 21 mV, rendering deguelin completely dispersible in aqueous media. Encapsulation of deguelin in cationic DMP nanoparticles enhanced the anticancer activity of deguelin in vitro. In addition, D/DMP nanoparticles were incorporated into a thermo-sensitive Pluronic F127 hydrogel, forming a novel D/DMP-F system, which remained in a flowing liquid state at lower than 25 °C, but underwent gelation at higher temperatures. The DMP nanoparticles in the F127 hydrogel system (DMP-F) could significantly extend the hydrophobic drug residence time and increase the drug concentration within the bladder. These results suggested that DMP-F was a good intravesical drug delivery system and D/DMP-F may have promising applications in intravesical therapy of bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.