The function of keratinocyte growth factor (KGF) in normal and wounded skin was assessed by expression of a dominant-negative KGF receptor transgene in basal keratinocytes. The skin of transgenic mice was characterized by epidermal atrophy, abnormalities in the hair follicles, and dermal hyperthickening. Upon skin injury, inhibition of KGF receptor signaling reduced the proliferation rate of epidermal keratinocytes at the wound edge, resulting in substantially delayed reepithelialization of the wound.
T cell receptor (TCR) signaling requires activation of Zap-70 and Src family tyrosine kinases, but requirements for other tyrosine kinases are less clear. Combined deletion in mice of two Tec kinases, Rlk and Itk, caused marked defects in TCR responses including proliferation, cytokine production, and apoptosis in vitro and adaptive immune responses to Toxoplasma gondii in vivo. Molecular events immediately downstream from the TCR were intact in rlk-/-itk-/- cells, but intermediate events including inositol trisphosphate production, calcium mobilization, and mitogen-activated protein kinase activation were impaired, establishing Tec kinases as critical regulators of TCR signaling required for phospholipase C-gamma activation.
Naive Itk-deficient CD4+ T cells were unable to establish stable IL-4 production, even when primed in Th2-inducing conditions. In contrast, IFNgamma production was little affected. Failure to express IL-4 occurred even among cells that had gone through multiple cell divisions and was associated with a delay in the kinetics and magnitude of NFATc nuclear localization. IL-4 production was restored genetically by retroviral reconstitution of Itk or biochemically by augmenting the calcium flux with ionomycin. In vivo, Itk-deficient mice were unable to establish functional Th2 cells. Development of protective Th1 cells was unimpeded. These data define a nonredundant role for Itk in modulating signals from the TCR/CD28 pathways that are specific for the establishment of stable IL-4 but not IFNgamma expression.
Itk is a T cell protein tyrosine kinase (PTK) that, along with Btk and Tec, belongs to a family of cytoplasmic PTKs with N-terminal pleckstrin homology domains. Btk plays a critical role in B lymphocyte development. To determine whether Itk has an analogous role in T lymphocytes, we used gene targeting to prepare mice lacking expression of Itk. Such animals had decreased numbers of mature thymocytes, an effect most clearly observed in mice expressing T cell receptor (TCR) transgenes. Mature T cells from Itk-deficient mice had reduced proliferative responses to allogeneic MHC stimulation and to anti-TCR cross-linking, but responded normally to stimulation with phorbol ester plus ionomycin or with IL-2. These results provide genetic evidence that Itk is involved in T cell development and also suggest that Itk has an important role in proximal events in TCR-mediated signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.