Surface ozone is damaging to human health and crop yields. When evaluating global air pollution risk, gridded datasets with high accuracy are desired to reflect the local variations in air pollution concentrations. Here, a cluster‐enhanced ensemble machine learning method was used to develop a new 0.5‐degree monthly surface ozone data set during 2003–2019 by combining numerous informative variables. The overall accuracy of our data set is 91.5% (90.8% for space and 92.3% for time). Historically, populations in South Asia, North Africa and Middle‐East, and High‐income North America are exposed to the highest ozone concentrations. Globally, the population weighted ozone concentration in the peak season is 47.07 ppbv. Our results highlight that ozone pollution is intensifying in some regions, and implicate air quality management is crucial to secure human health from air pollution.
Relative crop yield losses to air pollution ranged 4-23% in the United States over the past four decades.
10• Air pollution, climate, and their interactions play essential roles in regulating crop 11 yields.
12• Air quality and regional climate change from fossil fuel use should both be con-13 sidered in any assessment of food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.