MiR399 and its target PHOSPHATE2 (PHO2) play pivotal roles in phosphate signaling in plants. Loss of function mutation in PHO2 leads to excessive Pi accumulation in shoots and growth retardation in diploid plants like Arabidopsis thaliana and rice (Oryza sativa). Here we isolated three PHO2 homologous genes TaPHO2-A1, -B1 and -D1 from hexaploid wheat (Triticum aestivum). These TaPHO2 genes all contained miR399-binding sites and were able to be degraded by tae-miR399. TaPHO2-D1 was expressed much more abundantly than TaPHO2-A1 and -B1. The ion beam-induced deletion mutants were used to analyze the effects of TaPHO2s on phosphorus uptake and plant growth. The tapho2-a1, tapho2-b1 and tapho2-d1 mutants all had significant higher leaf Pi concentrations than did the wild type, with tapho2-d1 having the strongest effect, and tapho2-b1 the weakest. Two consecutive field experiments showed that knocking out TaPHO2-D1 reduced plant height and grain yield under both low and high phosphorus conditions. However, knocking out TaPHO2-A1 significantly increased phosphorus uptake and grain yield under low phosphorus conditions, with no adverse effect on grain yield under high phosphorus conditions. Our results indicated that TaPHO2s involved in phosphorus uptake and translocation, and molecular engineering TaPHO2 shows potential in improving wheat yield with less phosphorus fertilizer.
A farnesyl-diphosphate synthase gene, designated GlFPS, was isolated from a triterpene-producing basidiomycetous fungus, Ganoderma lucidum. The GlFPS cDNA was found to contain an open reading frame of 1,083 bp, encoding a protein of 360 amino acids with a calculated molecular mass of 41.27 kDa. The deduced amino acid sequence of the GlFPS cDNA exhibited a high homology with other fungal FPS genes, and contained four conserved domains. Phylogenetic analysis showed that GlFPS belonged to the basidiomycete FPS group. Competitive PCR revealed that GlFPS was constitutively expressed in the mycelium growth stage, whereas the transcripts of GlFPS accumulated to high levels rapidly during the process of mushroom primordia. Treatment of mycelia with exogenous methyl jasmonate also caused a large accumulation of GlFPS mRNA. Subsequently, promoter analysis indicated that the 5' upstream region of GlFPS possessed various potential regulatory elements associated with physiological and environmental factors. Functional complementation of GlFPS in an ERG20-disrupted yeast strain indicated that the cloned cDNA encoded a farnesyl-diphosphate synthase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.