The aim of this study was to investigate the effects of various renal pelvic pressure gradients on nephrons with purulent infection. Five miniature test pigs were selected. One side of the kidney was used to prepare the pyonephrosis model and the other side was used as the healthy control. A piezometer and a water fill tube were inserted into the renal pelvis through the ureter. Prior to perfusion, punctures were made on the healthy and purulent sides of the kidneys to obtain tissues (as controls). Subsequently, a puncture biopsy was conducted on the kidneys at five pressure levels: 10, 20, 30, 40 and 50 mmHg. Once the renal pelvic pressure had increased, the healthy and injured kidneys presented pathological changes, including dilation of the renal tubule and capsule and compression of the renal glomerulus. When the renal pelvic pressure exceeded 20 mmHg, the injured kidney presented more damage. Electron microscopy revealed that the increase in pressure resulted in the following: the podocyte gap widened, the epithelial cells of the renal capsule separated from the basement membrane, the basement membrane thickness became uneven, the continuity of the basement membrane was interrupted at multiple positions and the renal tubule microvillus arrangement became disorganised. The manifestations in the pyonephrosis model were more distinct compared with those in the healthy kidney. As the renal pelvic pressure exceeds 20 mmHg under a renal purulent infection status, the nephrons become damaged. The extent of the damage is aggravated as the pressure is increased.
A reduced graphene oxide electrode with a 3D hierarchical architecture achieves 3D penetration of hydrogel, giving rise to a high-performance quasi-solid-state supercapacitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.