A micro optoelectromechanical system (MOEMS) resonator gyroscope based on a waveguide micro-ring resonator was proposed. This sensor was operated by measuring the shift of the transmission spectrum. Modal analysis was carried out for the disc sensitive structure of the MOEMS resonator gyroscope (MOEMS-RG). We deduced the equations between the equivalent stiffness and voltage of each tuning electrode and the modal parameters. A comprehensive investigation of the influences of the structure parameters on the sensitivity noise of the MOEMS-RG is presented in this paper. The mechanical sensitivity and transducer sensitivities of the MOEMS-RG, with varying structural parameters, are calculated based on the finite-element method. Frequency response test and the fiber optic spectrometer displacement test were implemented to verify the reliability of the model. Research results indicate that the resonant frequencies of the operating modes are tested to be 5768.407 Hz and 5771.116 Hz and the resonant wavelength change ΔX was 0.08 nm for 45° rotation angle. The resonant wavelength, which has a good linear response in working range, changes from −0.071 nm to 0.080 μm. The MOEMS-RG, with an optimized disc sensitive structure, can detect the deformation of the sensitive membrane effectively, and has a high sensitivity. This resonator shows very large meff, low f 0 , and very high Q. Therefore, this resonator can provide a small A R W B ( 0.09 ° / h ), which makes it a promising candidate for a low-cost, batch-fabricated, small size inertial-grade MOEMS gyroscope. The multi-objective optimization method could be expanded to include other objectives, constraints, or variables relevant to all kinds of gyroscopes or other microelectromechanical systems devices.
A biomimetic study on the auditory localization mechanism of Ormia ochracea was performed to improve the localization ability of small acoustic systems. We also present a microscale implementation of an acoustic localization device inspired by the auditory organ of the parasitic O. ochracea. The device consists of a pair of circular membranes coupled together with an elastic beam. The coupling serves to amplify the difference in magnitude and phase between the two membranes’ responses as the incident angle of the sound changes, allowing directional information to be deduced from the coupled device response. The research results show that the intermembrane bridge structure improves the sound source localization and directional weak acoustic signal acquisition of sound detectors. The recognition rate of the phase difference and amplitude ratio was greatly improved. The theoretical resolution of the incident angle of the sound source can reach 2° at a phase difference recognition rate of 5°. The sound source’s optimal identification frequency range for the coupling device based on the intermembrane bridge bionic structure is 300 Hz to 1500 Hz.
The nitrogen-vacancy center structure of diamond has attracted widespread attention due to its high sensitivity in quantum precision measurement. In this paper, a coupled phonon field is used to resonantly regulate the atomic spins of the nitrogen-vacancy center for improving the spin transition efficiency. Firstly, the interaction between phonons and lattice energy is analyzed based on the relationship between the wave function and the lattice displacement vector. The spin transition mechanism is investigated based on phonon resonance regulation, and the strain-induced energy transferable phonon-spin interaction coupling excitation model is established. Secondly, the coefficient matrix satisfying Bloch’s theorem is adopted to develop the phonon spectrum model of the first Brillouin zone characteristic region for different axial nitrogen-vacancy centers. Considering the thermal expansion, the thermal balance properties of phonon resonance system are analyzed and its specific heat model is studied based on the Debye model. Finally, the structure optimization model of different axial nitrogen-vacancy centers under the phonon model is built up based on the molecular dynamics simulation software CASTEP and density functional theory for first-principles research. The structural characteristics, phonon characteristics, and thermodynamic properties of nitrogen-vacancy centers are analyzed. The research results show that the evolution of phonon mode depends on the occupation of the nitrogen-vacancy center. A decrease in thermodynamic entropy accompanies the strengthening of the phonon mode. The covalent bond of diamond with nitrogen-vacancy center is weaker than that of a defect-free diamond. The thermodynamic properties of a defect-free diamond are more unstable. The primary phonon resonance frequency of diamond with nitrogen-vacancy centers are on the order of THz, and the secondary phonon resonance frequency is about in a range of 800 and 1200 MHz. A surface acoustic wave resonance mechanism with an interdigital width of 1.5 μm is designed according to the secondary resonance frequency, and its center frequency is about 930 MHz. The phonon resonance control method can effectively increase the spin transition probability of nitrogen-vacancy center under suitable phonon resonance control parameters, and thus realizing the increase of atomic spin manipulation efficiency.
Constructed by a two-dimensional micro-electrostatic comb actuator fabricated by bulk micromachined process, a novel test device on chip was designed to study the phenomena of the microfrictions in the side wall between movable micro-electromechanical system elements. The general analytic expressions of the applied voltages, displacement, the static friction coefficient and the geometry parameters were established. It was found that the displacement was linear to U y 2 , so the friction coefficient could be obtained by fitting them. And larger n b and l 2 could help to decrease U y and to increase the displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.