The promoter of glyceraldehyde-3-phosphate dehydrogenase (gpd) gene from Aspergillus nidulans (PgpdA) is widely used to direct expression of target genes constitutively in fungi. However, in some species, a heterogeneous promoter is found to be of low efficiency. To obtain a high-efficiency promoter for transformation of Beauveria bassiana, an entomopathogenic fungus widely used as an mycoinsecticide, a glyceraldehyde-3-phosphate dehydrogenase gene (Bbgpd) promoter, was cloned and characterized. Four deletion constructs (-2118, -1153, -726, and -354) of the 5'-upstream sequence of Bbgpd linked to a bar::gus fusion gene (phosphinothricin-resistance::beta-glucuronidase fused gene), which were used as selected marker gene and report gene, respectively, were generated. GUS activities of transgenic strains harboring -726, -1153, and -2118 deletion constructs were much stronger than that of the promoter of Aspergillus nidulans gpdA (PgpdA), with a twofold to threefold increase over that in the PgpdA construct. The -726 fragment was necessary to direct GUS expression in B. bassiana. No -354 transgenic progenies were obtained, possibly because it failed to initiate the transcription of bar::gus fusion gene. A remarkable increase of GUS activity was found between the -1153 and -726 constructs, indicating that some active transcriptional elements were located in this region. With a high expression level and relatively short sequence, PBbgpd can be used to drive target genes in B. bassiana transgenic research.
Defoliation is a commonly used viticultural technique to balance the ratio between grapevine vegetation and fruit. Defoliation is conducted around the fruit zone to reduce the leaf photosynthetic area, and to increase sunlight exposure of grape bunches. Apical leaf removal is not commonly practiced, and therefore its influence on canopy structure and resultant wine aroma is not well-studied. This study quantified the influences of apical and basal defoliation on canopy structure parameters using canopy cover photography and computer vision algorithms. The influence of canopy structure changes on the chemical compositions of grapes and wines was investigated over two vintages (2010–2011 and 2015–2016) in Yarra Valley, Australia. The Shiraz grapevines were subjected to five different treatments: no leaf removal (Ctrl); basal (TB) and apical (TD) leaf removal at veraison and intermediate ripeness, respectively. Basal leaf removal significantly reduced the leaf area index and foliage cover and increased canopy porosity, while apical leaf removal had limited influences on canopy parameters. However, the latter tended to result in lower alcohol level in the finished wine. Statistically significant increases in pH and decreases in TA was observed in shaded grapes, while no significant changes in the color profile and volatile compounds of the resultant wine were found. These results suggest that apical leaf removal is an effective method to reduce wine alcohol concentration with minimal influences on wine composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.