Background: Fractures are a medical disease with a high incidence, and about 5-10% of patients need bone transplantation to fill the defect. In this study, we aimed to synthesize a new type of coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG) self-healing hydrogel and to evaluate the therapeutic effects of this novel self-healing hydrogel as a human umbilical cord mesenchymal stem cells (hucMSC)-derived exosome carrier on bone defects in SD rat. Methods: HucMSCs were isolated from fetal umbilical cord tissue and characterized by surface antigen analysis and pluripotent differentiation in vitro. The cell supernatant after ultracentrifugation was collected to isolate exosomes, which were characterized by transmission electron microscopy and western blot analysis. In vitro cell induction experiments were performed to observe the effects of hucMSC-derived exosomes on the biological behavior of mouse osteoblast progenitor cells (mOPCs) and human umbilical vein endothelial cells (HUVECs). The CHA/SF/GCS/DF-PEG hydrogels were prepared using DF-PEG as the gel factor and then structural and physical properties were characterized. HucMSCs-derived exosomes were added to the hydrogel and their effects were evaluated in SD rats with induced femoral condyle defect. These effects were analyzed by X-ray and micro-CT imaging and H&E, Masson and immunohistochemistry staining. Results: HucMSC-derived exosomes can promote osteogenic differentiation of mOPCs and promote the proliferation and migration of HUVECs. The CHA/SF/GCS/DF-PEG hydrogel has a high self-healing capacity, perfect surface morphology and the precipitated CHA crystals have a small size and low crystallinity similar to natural bone minerals. The MTT results showed that the hydrogel was non-toxic and have a good biocompatibility. The in vivo studies have shown that the hydrogel containing exosomes
The aim of this study was to optimize the preparation method of polymethyl methacrylate (PMMA) denture base loaded with nano silver (NAg), to more effectively and safely impart sustainable antibacterial functions. NAg solution was synthetized and mixed with acrylic acid and methyl methyacrylate (MMA) monomer in order to prepare a new type of NAg solution (NS)/polymer methyl methacrylate denture base specimens (NS/PMMA). The surface morphology, mechanical strength, antimicrobial activity, anti-aging performance, cytotoxicity and biocompatibility of NS/PMMA denture base were evaluated in comparison with specimens fabricated using traditional NAg adding methods and NAg-free denture base. The aesthetic characteristics and mechanical strength of NS/ PMMA denture base met the clinical application requirements. Meanwhile, NS/PMMA denture base showed better antibacterial activity, anti-aging properties, no cytotoxicity and displayed exceptional biocompatibility. NS/PMMA denture base thus has great potential for clinical application.
There is growing clinical interest in the utilization of mesenchymal stem cells (MSCs) in the management of acute graft-versus-host disease (aGvHD), yet the effect of major histocompatibility complexes (MHCs) on B lymphocytes in this process has been less well documented. Working in an MHC fully mismatched murine aGvHD model, we found that MSC co-transfer significantly prolonged the survival time of the recipients. More interestingly, analysis on immunophenotypic profiles of posttransplant splenocytes showed that surface expression of CD69 (an early activation marker) and CD86 (a costimulatory molecule) was suppressed predominantly on donor derived B lymphocytes by MSC infusion. Additionally, mRNA level of interleukin-4, a potent B lymphocyte stimulator, was strikingly reduced from MSC-treated mice, while interleukin-10, the regulatory B lymphocytes inductor, was increased; these may underlie the lesser activation of B lymphocytes. In consistence, depletion of B lymphocytes in the transfusion inoculum further prolonged the survival time of aGvHD mice regardless of MSC administration. Therefore, B lymphocytes played an important role in the development of aGvHD, and they are targets in MSC-regulated immune response cascade in vivo. This study may provide a mechanistic clue for the treatment of human clinical aGvHD.
The targeted delivery of therapeutic agents to secondary lymphoid organs (SLOs), which are the niches for immune initiation, provides an unprecedented opportunity for immune intolerance induction. The alloimmune rejection postvascularized composite allotransplantation (VCA) is mediated by T lymphocytes. Human adipose‐derived stem cells (hASCs) possess the superiority of convenient availability and potent immunoregulatory property, but their therapeutic results in the VCA are unambiguous thus far. Chemokine receptor 7 (CCR7) can specifically guide immune cells migrating into SLOs. There, the genes of CCR7–GFP or GFP alone were introduced into hASCs by lentivirus. hASCs/CCR7 maintained the multidifferentiation and immunoregulatory abilities, but it gained the migration capacity elicited by secondary lymphoid organ chemokine (SCL) (CCR7 ligand) in vitro. Noteworthily, intravenously infused hASCs/CCR7 targetedly relocated in the T‐cell aggression area in SLOs. In a rat VCA model, hASCs/GFP transfusion had a rare effect on the allografted vascularized composite. However, hASCs/CCR7 infusion potently prolonged the grafts’ survival time. The ameliorated pathologic exhibition and the regulated inflammatory cytokines in the peripheral blood were also observed. The altered axis of Th1/Th2 and Tregs/Th17 in SLOs may underlie the downregulated rejection response. Moreover, the proteomic examination of splenic T lymphocytes also confirmed that hASCs/CCR7 decreased the proteins related to cytokinesis, lymphocyte proliferation, differentiation, and apoptotic process. In conclusion, our present study demonstrated that targeted migration of hASCs/CCR7 to SLOs highly intensifies their in vivo immunomodulatory effect in the VCA model for the first time. We believe this SLO‐targeting strategy may improve the clinical therapeutic efficacy of hASC for allogeneic and autogenic immune disease. Stem Cells 2019;37:1581–1594
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.