As metabolomics is widely used in the study of disease mechanisms, an increasing number of studies have found that metabolites play an important role in the occurrence of diseases. The aim of this study is to investigate the effects and mechanisms of quercetin in high-fat-sucrose diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) development using nontargeted metabolomics. A rat model of NAFLD was established by feeding with an HFD for 30 and 50 days. The results indicated quercetin exhibited hepatoprotective activity in 30-day HFD-induced NAFLD rats by regulating fatty acid related metabolites (adrenic acid, etc.), inflammation-related metabolites (arachidonic acid, etc.), oxidative stress-related metabolites (2-hydroxybutyric acid) and other differential metabolites (citric acid, etc.). However, quercetin did not improve NAFLD in the 50-day HFD; perhaps quercetin was unable to reverse the inflammation induced by a long-term high-fat diet. These data indicate that dietary quercetin may be beneficial to NAFLD in early stages. Furthermore, combining metabolomics and experimental approaches opens avenues to study the effects and mechanisms of drugs for complex diseases.
The precipitous increase in occurrence of non-alcoholic steatohepatitis (NASH) is a serious threat to public health worldwide. The pathogenesis of NASH has not yet been thoroughly studied. We aimed to elucidate the interplay between serotonin (5hydroxytryptamine, 5-HT) and NASH. The serum 5-HT levels in patients with nonalcoholic fatty liver disease (NAFLD) and a rat fed with high fat-sucrose diet (HFSD) were evaluated using liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF MS)/MS. The peripheral Tph1 inhibitor, LP533401, and a tryptophan (TRP)-free diet were administered to rats with NASH, induced by HFSD. BRL-3A cells were treated with 1 mM free fatty acids (FFAs) and/or 50 mM 5-HT, and then small interfering RNA (siRNA) targeting the 5-HT2A receptor (HTR2A) and the PPARg pharmaceutical agonist, pioglitazone, were applied. We found a marked correlation between 5-HT and NASH. The absence of 5-HT, through the pharmaceutical blockade of Tph1 (LP533401) and dietary control (TRP-free diet), suppressed hepatic lipid load and the expression of inflammatory factors (Tnfa, Il6, and Mcp-1). In BRL-3A cells, 50 mM 5-HT induced lipid accumulation and upregulated the expression of lipogenesis-ralated genes (Fas, Cd36, and Plin2) and the inflammatory response. Specifically, HTR2A knockdown and evaluation of PPARg agonist activity revealed that HTR2A promoted hepatic steatosis and inflammation by activating PPARg2. These results suggested that duodenal 5-HT was a risk factor in the pathological progression of NASH. Correspondingly, it may represent an attractive therapeutic target for preventing the development of NASH via the regulation of the HTR2A/PPARg2 signaling pathway.
Cardiovascular disease is the highest cause of death, and atherosclerosis (AS) is the primary pathogenesis of many cardiovascular diseases. In this study, we aim to investigate the possible pharmaceutical effects of Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) in AS. We fed zebrafish with high-cholesterol diet (HCD) to establish a zebrafish AS model and treated with DHP and observed plaque formation and neutrophil counts under a fluorescence microscope. Next, a parallel flow chamber was utilized to establish low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. We observed that DHP significantly improved HCD-induced lipid deposition, oxidative stress, and inflammatory response, mainly showing that DHP significantly increased superoxide dismutase (SOD) activity, decreased plaque formation, and decreased neutrophil recruitment and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS). Furthermore, DHP significantly improved LSS-induced oxidative stress and EC dysfunction. Our results indicated that DHP can exert treatment effects on AS, which may attribute to its hypolipidemic, antioxidant, anti-inflammatory activities and improving LSS-induced EC dysfunction. DHP has promising potential for further development as a functional natural medicine source targeted at AS prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.