The rapid growth of wearable systems demands sustainable, mechanically adaptable, and eco-friendly energy-harvesting devices. Quasi-solid ionic thermocells have demonstrated the capability of continuously converting low-grade heat into electricity to power wearable electronics. However, a trade-off between ion conductivity and mechanical properties is one of the most challenging obstacles for developing high-performance quasi-solid thermocells. Herein, the trade-off is overcome by designing anisotropic polymer networks to produce aligned channels for ion-conducting and hierarchically assembled crystalline nanofibrils for crack blunting. The ionic conductivity of the anisotropic thermocell has a more than 400% increase, and the power density is comparable to the record of state-of-the-art quasi-solid thermocells. Moreover, compared with the existing quasi-solid thermocells with the optimal mechanical performance, this material realizes biomimetic strain-stiffening and shows more than 1100% and 300% increases in toughness and strength, respectively. We believe this work provides a general method for developing high-performance, cost-effective, and durable thermocells and also expands the applicability of thermocells in wearable systems.
The unidirectional fluidics underwater promises the manipulation of gas/liquid for various significant applications. Inspired by the unique stomata on the surface of hornwort stems and leaves that enable the transport and storage of oxygen underwater, we propose a bionic cell with porous membranes fabricated by the projection microstereolithography based 3D printing technique. Different Laplace forces coming from different contact angles for the respectively superhydrophilic outside and hydrophobic inside promise unidirectional fluidic performance, which stop water flowing inside of the bionic cell while exhausting gas and liquid outside of it. In addition, geometric parameters of the bionic cell make a big difference in its unique unidirectional fluidic performance. Simultaneously, the underlying mechanisms of the unidirectional penetration of liquid in our 3D printed bionic cell are theoretically revealed. Moreover, we demonstrate potential applications of our bionic cell with underwater anaerobic chemical reactions to fully apply its outstanding unidirectional fluidics underwater. Our bionic cell opens a gate for potential applications in chemical and microfluidic engineering underwater, such as the storage of flammable materials, fast solid− liquid separations, and anaerobic chemical reactions.
Abstract:The oscillating heat pipe (OHP) is a new member in the family of heat pipes, and it has great potential applications in energy conservation. However, the fluid flow and heat transfer in the OHP as well as the fundamental effects of inner diameter on them have not been fully understood, which are essential to the design and optimization of the OHP in real applications. Therefore, by combining the high-speed visualization method and infrared thermal imaging technique, the fluid flow and thermal performance in the OHPs with inner diameters of 1, 2 and 3 mm are presented and analyzed. The results indicate that three fluid flow motions, including small oscillation, bulk oscillation and circulation, coexist or, respectively, exist alone with the increasing heating load under different inner diameters, with three flow patterns occurring in the OHPs, viz. bubbly flow, slug flow and annular flow. These fluid flow motions are closely correlated with the heat and mass transfer performance in the OHPs, which can be reflected by the characteristics of infrared thermal images of condensers. The decrease in the inner diameter increases the frictional flow resistance and capillary instability while restricting the nucleate boiling in OHPs, which leads to a smaller proportion of bubbly flow, a larger proportion of short slug flow, a poorer thermal performance, and easier dry-out of working fluid. In addition, when compared with the 2 mm OHP, the increasing role of gravity induces the thermosyphon effect and weakens the 'bubble pumping' action, which results in a little smaller and bigger thermal resistances of 3 mm OHP under small and bulk oscillation of working fluid, respectively.
Fractal geometry (fractional Brownian motion-FBM) is introduced to characterize the pore distribution of porous material. Based on this fractal characterization, a mathematical model of heat conduction is presented to study heat conduction behaviors in porous material with a focus on effective thermal conductivity. The role of pore structure on temperature distribution and heat flux is examined and investigated for fractal porous material. In addition, the effects of fractal dimension, porosity, and the ratio of solid-matrix-to-fluid-phase thermal conductivity (k s /k f ) on effective thermal conductivity are evaluated. The results indicate that pore structure has an important effect on heat conduction inside porous material. Increasing porosity lowers thermal conductivity. Even when porosity remains constant, effective thermal conductivity is affected by the fractal dimensions of the porous material. For porous material, the heat conduction capability weakens with increased fractal dimension. Additionally, fluid-phase thermal conduction across pores is effective in porous material only when k s /k f < 50. Otherwise, effective thermal conductivity for porous material with a given pore structure depends primarily on the thermal conductivity of the solid matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.