The rapid growth of wearable systems demands sustainable, mechanically adaptable, and eco-friendly energy-harvesting devices. Quasi-solid ionic thermocells have demonstrated the capability of continuously converting low-grade heat into electricity to power wearable electronics. However, a trade-off between ion conductivity and mechanical properties is one of the most challenging obstacles for developing high-performance quasi-solid thermocells. Herein, the trade-off is overcome by designing anisotropic polymer networks to produce aligned channels for ion-conducting and hierarchically assembled crystalline nanofibrils for crack blunting. The ionic conductivity of the anisotropic thermocell has a more than 400% increase, and the power density is comparable to the record of state-of-the-art quasi-solid thermocells. Moreover, compared with the existing quasi-solid thermocells with the optimal mechanical performance, this material realizes biomimetic strain-stiffening and shows more than 1100% and 300% increases in toughness and strength, respectively. We believe this work provides a general method for developing high-performance, cost-effective, and durable thermocells and also expands the applicability of thermocells in wearable systems.
Layered SnSe is an emerging class of black phosphorus, which is non-toxic, eco-friendly, and chemically stable. Recently, SnSe nanostructures have triggered more research interest and enabled broad applications beyond demonstrating their great performances on thermoelectricity. However, there are also a great many significant studies of SnSe nanostructures beyond thermoelectricity. SnSe quantum dots, nanosheets, nanowires, and thin films with diverse morphologies have been synthesized using various chemical and physical preparation approaches. SnSe is a multi-phase semiconductor, and its nanostructures endow unique properties, including small electron effective mass, ultralow thermal conductivity, huge anisotropy, and the largest 2D piezoelectric coefficient ever predicted. The versatility of SnSe nanostructures can enable potential applications ranging from ultrafast photonics, logic devices, photodetectors, solar cells, photocatalysis, energy storage, and biology to more cutting-edge interdisciplinary subjects. In this review, the recent advances made in SnSe nanostructures are summarized, covering basics, synthesis, properties, and applications, just giving a passing comment on thermoelectricity. An in-depth perspective on the challenges and prospects of SnSe nanostructures toward broad and practical applications is also given.
Despite the advantages of low cost, high stability, and activities, a majority of nanozymes rely on strict synthesis conditions and precise size/structure control, hindering the stable, bulk, and high-yield production that is necessary for general use. To facilitate the transition of nanozymes from benchtop to real-world applications, we herein present a one-step approach, which only needs mixing of two broad commercialized reagents at room temperature, to harvest gold nanoparticles–bovine serum albumin (BSA) nanocomposite (BSA-Au) with distinct oxidase-like activity and good stability in a broad range of harsh conditions. Density functional theory (DFT) calculations demonstrate the oxidase-like activity of BSA-Au stemming from thermodynamically and kinetically favored facets for O2 activation. The reactive oxygen species (ROS) generation of BSA-Au contributes to the catalytic activities and further enables water sterilization and antibacterial applications against superbugs. This one-step strategy promises great potential in bulk production of nanozyme for broad application beyond laboratory use.
Flexible strain sensors have enormous potential in wearable devices, robots, and health monitoring equipment. However, the poor stretchability of strain sensors based on semiconductors and the low sensitivity of resistance change‐based hydrogel strain sensors hinders the comprehensive application. Herein, a flexible piezoionic SnSe‐hydrogel composite with an optimized structure and improved performance is designed. The piezoionic output rises nonlinearly as the applied force increases, with the piezoionic coefficient up to 1780 nV Pa−1 and −7.21 nA Pa−1. The composite can realize the continuous positioning in 1D space based on the piezoionic effect. It also demonstrates self‐powered characteristics, an ultrafast response speed of 6–8 ms, and a high gauge factor of 95.89. The sensor is exemplified to monitor fist clenching and finger bending, which has the potential to discriminate different joint movements. Meanwhile, the device can light up a light–emitting diode under pressure and bending. The as‐prepared piezoionic SnSe‐hydrogel device, having both high stretchability and sensitivity, may shed light on developing high‐performance flexible strain sensors and generators.
Delayed use of appropriate antibiotics for superbugs, particularly for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pn), has caused extensive morbidity and mortality worldwide. Therefore, rapid and on-site antimicrobial susceptibility testing (AST) is urgently required. Unfortunately, currently, no phenotypic AST can realize a sample-to-answer result within 2 h directly from a clinical sample and without using laboratory equipment or customized devices. Inspired by observing that E. coli and K. pn can rapidly catalyze H2O2, we developed a plasmonic nanosensor that responds to the proliferation of bacteria for realizing rapid AST. The results can be determined with the naked eye, digitized using a smartphone, and validated using ultraviolet–visible spectrometry. Our assay achieved superb area under the curves of 0.9752 and 1 in a receiver operating characteristic analysis directly obtained from uncultured clinical urine samples infected by E. coli and K. pn, respectively. The entire process from sample collection to analysis takes 100 min for E. coli and 85 min for K. pn detection. Our platform provides a practical approach for performing on-site AST in clinics to improve the survival of patients. It releases the burden of superbugs and avoids the abuse of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.