To improve the accuracy of the maximum correntropy Kalman filter (MCKF) in wireless sensors networks (WSNs) positioning, a dynamic self-tuning maximum correntropy Kalman filter (DSTMCKF) is proposed, where innovation and the sensors information of the WSNs are used to adjust the noise covariance matrices, and the maximum correntropy criterion is the criterion for the filter’s optimality. By dynamically adjusting the noise covariance matrices, the DSTMCKF ensures that the correntropy distribution is accurate in the presence of non-Gaussian noise (NGN), thus improving its ability to handle the NGN. In simulation and real environment positioning experiments, the DSTMCKF is used to compare with the MCKF, variable kernel width–maximum correntropy Kalman filter (VKW-MCKF) and robust minimum error entropy Kalman filter (R-MEEKF). Among the four filters, the DSTMCKF has the highest accuracy, and the error of the DSTMCKF is reduced by 34.5, 42.9 and 40.0%, respectively, compared with the MCKF, VKW-MCKF and R-MEEKF in the real-world environment positioning experiment. The application of the DSTMCKF in WSNs positioning systems improves the stability of the control systems because of the rising positioning accuracy, which makes WSNs positioning systems more widely used in scenarios requiring high stability, such as automatic parking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.