The transition from juvenile to adult life is accompanied by programmed remodeling in many tissues and organs, which is key for organisms to adapt to the demand of the environment. Here we report a novel regulated alternative splicing program that is crucial for postnatnal heart remodeling in the mouse. We identify the essential splicing factor ASF/SF2 as a key component of the program, regulating a restricted set of tissue-specific alternative splicing events during heart remodeling. Cardiomyocytes deficient in ASF/SF2 display an unexpected hypercontraction phenotype due to a defect in postnatal splicing switch of the Ca(2+)/calmodulin-dependent kinase IIdelta (CaMKIIdelta) transcript. This failure results in mistargeting of the kinase to sarcolemmal membranes, causing severe excitation-contraction coupling defects. Our results validate ASF/SF2 as a fundamental splicing regulator in the reprogramming pathway and reveal the central contribution of ASF/SF2-regulated CaMKIIdelta alternative splicing to functional remodeling in developing heart.
Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show the core region of solid tumours displayed glutamine deficiency compared to other amino acids. Low glutamine in tumour core regions led to dramatic histone hyper-methylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain containing (JmjC) histone demethylases (JHDMs). Using patient-derived V600EBRAF melanoma cells, we found that low glutamine-induced histone hyper-methylation resulted in cancer cell de-differentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and methyltransferase EZH2 respectively reproduced and attenuated the low glutamine effects in vitro and in vivo. Thus, intra-tumoural regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response.
Many genetic diseases are caused by mutations in cis-acting splicing signals, but few are triggered by defective transacting splicing factors. Here we report that tissue-specific ablation of the splicing factor SC35 in the heart causes dilated cardiomyopathy (DCM). Although SC35 was deleted early in cardiogenesis by using the MLC-2v-Cre transgenic mouse, heart development appeared largely unaffected, with the DCM phenotype developing 3-5 weeks after birth and the mutant animals having a normal life span. This nonlethal phenotype allowed the identification of downregulated genes by microarray, one of which was the cardiac-specific ryanodine receptor 2. We showed that downregulation of this critical Ca 2 þ release channel preceded disease symptoms and that the mutant cardiomyocytes exhibited frequency-dependent excitation-contraction coupling defects. The implication of SC35 in heart disease agrees with a recently documented link of SC35 expression to heart failure and interference of splicing regulation during infection by myocarditis-causing viruses. These studies raise a new paradigm for the etiology of certain human heart diseases of genetic or environmental origin that may be triggered by dysfunction in RNA processing.
Molecular diversity via alternative splicing is important for cellular function and development. SR proteins are strong candidate regulators of alternative splicing because they can modulate splice site selection. However, endogenous substrates for SR proteins are largely unknown, and their roles as splicing regulators in vertebrate development are unclear. Here we report that Cre-mediated conditional deletion of the prototypical SR protein SC35 in the thymus causes a defect in T cell maturation. Deletion of SC35 alters alternative splicing of CD45, a receptor tyrosine phosphatase known to be regulated by differential splicing during thymocyte development and activation. This study establishes a model to address the function of SR proteins in physiological settings and reveals a critical role of SC35 in a T cell-specific regulated splicing pathway.
SR proteins are a family of sequence-specific RNA binding proteins originally discovered as essential factors for pre-mRNA splicing and recently implicated in mRNA transport, stability, and translation. Here, we used a genetic complementation system derived from conditional knockout mice to address the function and regulation of SR proteins in vivo. We demonstrate that ASF/SF2 and SC35 are each required for cell viability, but, surprisingly, the effector RS domain of ASF/SF2 is dispensable for cell survival in MEFs. Although shuttling SR proteins have been implicated in mRNA export, prevention of ASF/SF2 from shuttling had little impact on mRNA export. We found that shuttling and nonshuttling SR proteins are segregated in an orderly fashion during mRNP maturation, indicating distinct recycling pathways for different SR proteins. We further showed that this process is regulated by differential dephosphorylation of the RS domain, thus revealing a sorting mechanism for mRNP transition from splicing to export.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.