Aim: To investigate the effect of genistein on bone homeostasis in mandibular subchondral bone of rats. Methods: Female SD rats were administered with genistein (10 and 50 mg/kg) or placebo by oral gavage for 6 weeks. Then the animals were sacrificed, and histomorphology and micro-structure of mandibular condyle were examined using HE staining and micro-CT analysis, respectively. The expression levels of alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), the receptor activator of nuclear factor κB ligand (RANKL) and estrogen receptors (ERs) in mandibular condyle were detected using real-time PCR. Cultured osteoblasts were prepared from rat mandibular condyle for in in vitro study. The cells were treated with genistein (10 -7 or 10 -4 mol/L) for 48 h. The expression of the bone homeostasis-associated factors and estrogen receptors (ERs) was detected using realtime PCR, and ER silencing was performed. Results: At both the low-and high-doses, genistein significantly increased the bone mineral density (BMD) and bone volume, and resulted in thicker subchondral trabecular bone in vivo. In both in vivo and in vitro study, the low-dose genistein significantly increased the expression of ALP, OC and OPG, but decreased the expression of RANKL and the RANKL/OPG ratio. The high-dose genistein decreased the expression of all these bone homeostasis-associated factors. Both the low and high doses of genistein significantly increased the expression of ERβ, while ERα expression was increased by the low dose genistein and decreased by the high dose genistein. ERβ silencing abrogated most of the effects of genistein treatment. Conclusion: In rat mandibular condylar subchondral bone, low-dose genistein increases bone formation and inhibit bone resorption, while excess genistein inhibits both bone formation and resorption. The effects of genistein were predominantly mediated through ERβ.
Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.