The role of telomerase reverse transcriptase (TERT) gene promoter mutations in the aggressiveness of papillary thyroid cancer (PTC) remains to be further investigated. Here we examined the relationship of TERT promoter mutations and BRAF V600E with the clinicopathological features of PTC in 653 patients. Sanger sequencing of genomic DNA from primary PTC tumors was performed for mutation detection and genotype-clinicopathological correlation of the tumor was analyzed. BRAF V600E and TERT promoter mutations were found in 63.7% (416 of 653) and 4.1% (27 of 653) of patients, respectively; the latter became 9.8% when only tumors ≥ 1.5 cm were analyzed. TERT promoter mutations occurred more frequently in BRAF mutation-positive cases compared to wild-type cases, being 5.3% in the former versus 2.1% in the latter (P = 0.050). BRAF and TERT promoter mutations were each significantly associated with high-risk clinicopathological features of PTC, such as old patient age, large tumor size, extrathyroidal invasion, capsular invasion, and advanced disease stages. Coexistence of BRAF V600E and TERT promoter mutations was particularly associated with high-risk clinicopathological features, as exemplified by extrathyroidal invasion seen in 54.5% (12/22) of patients harboring both mutations versus 9.9% (23/232) of patients harboring neither mutation (P < 0.001). Thus, this study, the largest on TERT mutation so far, demonstrates a significant role of BRAF V600E and TERT promoter mutations in the aggressiveness of PTC, which is particularly robust and cooperative when the two mutations coexist. These results, together with previous studies, establish a significant role of these mutations in the aggressiveness of PTC.
The most effective way to contain cerebral ischemic injury is reperfusion; however, reperfusion itself may result in tissue injury, for which inflammatory damage is one of the main causative factors. NALP3 inflammasome is a multiprotein complex. It consists of NALP3, ASC, and caspase-1, whose function is to switch on the inflammatory process. Chrysophanol is an extract from plants of Rheum genus and it possesses many pharmacological effects including its anti-inflammation activity. In this study, the effects of chrysophanol in cerebral ischemia/reperfusion and the potential mechanisms were investigated. Male CD1 mice were subject to transient middle cerebral artery occlusion (tMCAO). The NALP3 inflammasome activation status and its dynamic expression during the natural inflammatory response induced by tMCAO were first profiled. The neuroprotective effects of chrysophanol were then assessed and the potential mechanisms mediating the observed neuroprotection were then explored. Physical parameters including neurological deficit, infarct size, brain edema, and BBB permeability were measured at 24 h after tMCAO. Confocal microscopy, Western blotting, immunohistochemistry, and qRT-PCR techniques were utilized to analyze the expression of NALP3 inflammasome and IL-1β. Our results indicated that the brain tissue damage during cerebral ischemia/reperfusion is accompanied by NALP3 inflammasome activation. Chrysophanol could inhibit the activation of NALP3 inflammasome and protect cerebral ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.