Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
An effective approach of template-free alcoholysis is employed to prepare hollow core-shell SnO 2 /C nanoparticle aggregates as anode materials for Li-ion batteries. Amorphous carbon can be loaded on the SnO 2 nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results in the formation of hollow core-shell SnO 2 /C nanoparticle aggregates. They exhibit a stable reversible capacity of 640 mA h g À1 at a constant current density of 50 mA g À1 , and the capacity retention is maintained over 90.9% after 100 cycles. The intrinsic hollow core-shell nature as well as high porosity of the unique nanostructures ensures the electrode has a high capacity and a good electronic conductivity. The hollow loose structure offers sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Herein, the SnO 2 /C electrode presents excellent electrochemical performance. This method is simple, low cost, mass-productive, and can also be used to prepare other advanced functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.