While trade-offs between flight capability and reproduction is a common phenomenon in wing dimorphic insects, the molecular basis is largely unknown. In this study, we examined the transcriptomic differences between winged and wingless morphs of cotton aphids, Aphis gossypii, using a tag-based digital gene expression (DGE) approach. Ultra high-throughput Illumina sequencing generated 5.30 and 5.39 million raw tags, respectively, from winged and wingless A. gossypii DGE libraries. We identified 1,663 differentially expressed transcripts, among which 58 were highly expressed in the winged A. gossypii, whereas 1,605 expressed significantly higher in the wingless morphs. Bioinformatics tools, including Gene Ontology, Cluster of Orthologous Groups, euKaryotic Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes pathways, were used to functionally annotate these transcripts. In addition, 20 differentially expressed transcripts detected by DGE were validated by the quantitative real-time PCR. Comparative transcriptomic analysis of sedentary (wingless) and migratory (winged) A. gossyii not only advances our understanding of the trade-offs in wing dimorphic insects, but also provides a candidate molecular target for the genetic control of this agricultural insect pest.
Insect antennae have a primary function of perceiving and discerning odorant molecules including sex pheromones and host plant volatiles. The assumption that genes highly expressed in the antennae may have an olfactory-related role associated with signal transduction. Here, one delta subfamily glutathione S-transferase (GST) gene (GmolGSTD1) was obtained from an antennal transcriptome of Grapholita molesta.Quantitative real-time polymerase chain reaction results revealed that GmolGSTD1 was mainly expressed in antennae and the expression levels were significantly higher in female antennae than in male antennae. The recombinant GmolGSTD1 (rGmolGSTD1) showed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The pH range for optimal rGmolGSTD1 enzyme activity was 6.0-6.5, and rGmolGSTD1 enzyme activity had maximal peaks at 35-40°C. Spectrophotometric analysis indicated that insecticides had weak inhibitory effects on the activity of rGmolGSTD1 with the inhibitory rates of 28.82% for chlorpyrifos, 22.27% for lambda-cyhalothrin, 18.07% for bifenthrin, 20.42% for acetamiprid, 17.57% for thiamethoxam, 25.67% for metaflumizone, 27.43% for abamectin, and 7.24% Arch. Insect Biochem. Physiol. 2018;99:e21512. wileyonlinelibrary.com/journal/arch contributed equally to this work. for chlorbenzuron. rGmolGSTD1 exhibited high degradation activity to the sex pheromone component (Z)-8-dodecenyl alcohol and the host plant volatile butyl hexanoate with the degradation efficiency of 75.01% and 48.54%, respectively. We speculate that GmolGSTD1 works in inactivating odorant molecules and maintaining sensitivity to olfactory communication of G. molesta. K E Y W O R D S glutathione S-transferase, Grapholita molesta, olfactory, signal deactivation
Odorant-binding proteins (OBPs) act in insect olfactory processes. OBPs are expressed in the olfactory organs and serve in binding and transport of hydrophobic odorants through the sensillum lymph to olfactory receptor neurons within the antennal sensilla. In this study, three OBP genes were cloned from the antennal transcriptome database of Grapholita molesta via reverse-transcription PCR. Recombinant GmolOBPs (rGmolOBPs) were expressed in a prokaryotic expression system and enriched via Ni ion affinity chromatography. The binding properties of the three rGmolOBPs to four sex pheromones and 30 host-plant volatiles were investigated in fluorescence ligand-binding assays. The results demonstrated that rGmolOBP8, rGmolOBP11, and rGmolOBP15 exhibited high binding affinities with the major sex pheromone components (E)-8-dodecenyl acetate, (Z)-8-dodecenyl alcohol, and dodecanol. The volatiles emitted from peach and pear, decanal, butyl hexanoate, and α-ocimene, also showed binding affinities to rGmolOBP8 and rGmolOBP11. Hexanal, heptanal, and α-pinene showed strong binding affinities to rGmolOBP15. Results of the electrophysiological recording experiments and previous behavior bioassays indicated that adult insects had strong electroantennogram and behavioral responses toward butyl hexanoate, hexanal, and heptanal. We infer that the GmolOBP8 and GmolOBP11 have dual functions in perception and recognition of host-plant volatiles and sex pheromones, while GmolOBP15 was mainly involved in plant volatile odorants' perception.
The oriental fruit moth Grapholita molesta (Busck) is a globally important insect pest. In some parts of its geographic range, the oriental fruit moth shifts its attack from peach orchards to pear orchards late in the growing season. The phenological effects of host plants on the performance of the moth were evaluated by examining the development and fecundity of the moth reared on peach (Prunus persica variety "Shahong") and pear (Pyrus bretshneideri variety "Dangshan Su") collected at various times of the growing season under laboratory conditions. Results showed that the moth developed faster on shoots and fruits of peach than on those of pear. The preimaginal survival rate was the highest on peach shoots, and the moth could not survive on pear fruit collected on May 10. For both peach and pear, the boring rates of neonatal larvae were significantly higher on shoots than on fruits, and the pupal mass of females was significantly higher on fruits than on shoots. The boring rate increased with pear fruits growing during later days. Fecundity was significantly less on pear shoots than on the other plant materials. The results of this study suggest a possible host adaptation process in oriental fruit moth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.