Considering the influence of lateral distance on consecutive vehicles, this paper proposes a new car following model based on the artificial potential field theory (APF). Traditional car following behaviors all assume that the vehicles are driving along the middle of a lane. Different from the traditional car following principles, this incorporation of APF offers a potential breakthrough in the fields of car following theory. The individual vehicle can be represented as a unit point charge in electric field, and the interaction of the attractive potential energy and the repellent potential energy between vehicles simplifies the various influence factors on the target vehicle in actual following behavior. Consequently, it can make a better analysis of the following behavior under the lateral separation. Then, the proposed model has been demonstrated in simulation environment, through which the space-time trajectories and the potential energy change regulation are obtained. Simulations verify that the following vehicle's behavior is vulnerable to be affected by lateral distance, where the attractive potential energy tends to become repellent potential energy as the longitudinal distance decreases. The search results prove that the proposed model quantifies the relations between headway and potential energy and better reflects the following process in real-world situation.
The macroscopic fundamental diagram (MFD) provides a method to evaluate macro traffic operation through micro traffic parameters, which can be applied to traffic control to prevent traffic congestion transfer and improve road network efficiency. However, due to the large scale of the urban road network as well as the complex temporal and spatial distribution of road congestion, the application of the MFD for signal control first requires the partition of the urban road network. Based on the analysis of MFD partition purposes, a set of MFD partition methods based on graph theory was designed. Firstly, graph theory was used to transform the urban road network; secondly, the minimum spanning tree method was used to divide the urban traffic network map. Moreover, the attribution of the link between connected regions is determined. Our method can solve the problem of ambiguous intersection ownership, and the road sections belonging to the same road in opposite directions are separated. This method has the ability to control the size of the area by limiting the number of intersections; Finally, the evaluation index of regional clustering results was drawn. To achieve the research objective, we collected and processed vehicle information data from the Xuzhou car-hailing platform to obtain traffic density information. Then, we selected an area with sufficient data and a large enough road network. The empirical value range of the regional control value was obtained by comparing the values of multiple groups of measurement data k and evaluation indexes. In this process, it was found that during the period of flat peak and peak transition, while the regional average traffic density changes, the uniformity of traffic density first decreases and then increases. The traffic density uniformity of the signal control area can be improved by controlling the size of the signal control area. We obtained the empirical value range of the regional control value k by comparing the values of multiple groups of measurement data k and evaluation indexes. Then, we compared them with the two kinds of traditional partition algorithms and improved multiple dichotomy algorithms. Our method improves road network balance by 5% over existing methods.
As an inherent property of the road network, macroscopic fundamental diagram (MFD) method can effectively describe the traffic status of the urban roads and identify the relationship among key factors, such as traffic flow and occupancy. Currently, using MFD is easily affected by various network inner factors including topology and road density, so in this paper we propose a method to identify inner characteristic of road network and do a series of comparisons under different scenarios with fixed traffic input circumstance. The differential impact of data collector setting locations are discussed with a aim to reveal the respective location setting suitable for various networks conditions in initial; then road topology and density are designed in road network and simulated MFD performances with flow equilibrium affections. It is shown as the dispersion decreasing of link length or road density of network, the network exhibits better operation efficiency so as to increase the output of link flow and the dissipative ability of the road network. Meanwhile, the equivalent of entrances and exits is proved as another important factor has same impact on MFD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.