Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
This paper proposes a novel on-chip optical pulse train generator (OPTG) based on optomechanical oscillation (OMO). The OPTG consists of an optical cavity and mechanical resonator, in which OMO periodically modulates the optical cavity field and consequently generates optical pulse trains. The dimensionless method are introduced to simulate the OMO-based OPTG with reduced analysis complexity. We investigate the optomechanical coupling and the dynamic back-action processes, by which we found a dead zone that forbids the OMO, and derived the optimal laser detuning and the minimum threshold power. We analysed the OMO-based OPTG in terms of the pulse shape distortion, extinction ratio (ER) and duty-cycle (DC). Increasing input power, mechanical and optical Q-factors will increase ER, reduce DC and produce sharper and shorter optical pulses. We also discuss the design guidance of OMO-based OPTG and explore its application in distributed fibre optical sensor (DFOS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.