A novel design of hollow structured SnO@Si nanospheres was presented, which not only demonstrates high volumetric capacity as anode of LIBs, but also prevents aggregation of Sn and confines solid electrolyte interphase thickening. An impressive volumetric specific capacity of 1030 mAh cm was maintained after 500 cycles. The electrochemical impedance spectroscopy and differential scanning calorimetry indicated that solid electrolyte interphase can be confined in pores of as-prepared hollow structured SnO@Si.
Silicon anodes for lithium-ion batteries are of much interest owing to their extremely high specific capacity but still face some challenges, especially the tremendous volume change which occurs in cycling and further leads to the disintegration of electrode structure and excessive growth of solid electrolyte interphase (SEI). Here, we designed a novel approach to confine the inward growth of SEI by filling solid polymer electrolyte (SPE) into pores of hollow silicon spheres. The as-prepared composite delivers a high specific capacity of more than 2100 mAh g and a long-term cycle stability with a reversible capacity of 1350 mAh g over 500 cycles. The growing behavior of SEI was investigated by electrochemical impedance spectroscopy and differential scanning calorimetry, and the results revealed that SPE occupies the major space of SEI growth and thus confines its excessive growth, which significantly improves cycle performance and Coulombic efficiency of cells embracing hollow silicon spheres.
A design of coaxial hollow nanocables of carbon nanotubes and silicon composite (CNTs@Silicon) was presented, and the lithiation/delithiation behavior was investigated. The FIB-SEM studies demonstrated hollow structured silicon tends to expand inward and shrink outward during lithiation/delithiation, which reveal the mechanism of inhibitive effect of the excessive growth of solid−electrolyte interface by hollow structured silicon. The as-prepared coaxial hollow nanocables demonstrate an impressive reversible specific capacity of 1150 mAh g −1 over 500 cycles, giving an average Coulombic efficiency of >99.9%. The electrochemical impedance spectroscopy and differential scanning calorimetry confirmed the SEI film excessive growth is prevented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.