Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes were associated with distinct clinical features including age, sex, severity, and disease stages of COVID-19. SARS-CoV-2 RNAs were found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within viral positive cells. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and developing effective therapeutic strategies for COVID-19.
Background: The outbreak of Coronavirus Disease 2019 (COVID-19) has become a global public health emergency. Methods: 204 elderly patients (!60 years old) diagnosed with COVID-19 in Renmin Hospital of Wuhan University from January 31st to February 20th, 2020 were included in this study. Clinical endpoint was inhospital death. Results: Of the 204 patients, hypertension, diabetes, cardiovascular disease, and chronic obstructive pulmonary disease (COPD) were the most common coexisting conditions. 76 patients died in the hospital. Multivariate analysis showed that dyspnea (hazards ratio (HR) 2.2, 95% confidence interval (CI) 1.414-3.517; p < 0.001), older age (HR 1.1, 95% CI 1.070-1.123; p < 0.001), neutrophilia (HR 4.4, 95% CI 1.310-15.061; p = 0.017) and elevated ultrasensitive cardiac troponin I (HR 3.9, 95% CI 1.471-10.433; p = 0.006) were independently associated with death.
Conclusion:Although so far the overall mortality of COVID-19 is relatively low, the mortality of elderly patients is much higher. Early diagnosis and supportive care are of great importance for the elderly patients of COVID-19.
Poly-(ADP-ribose) polymerase inhibitors (PARPi) selectively kill breast and ovarian cancers with defects in homologous recombination (HR) caused by BRCA1/2 mutations. There is also clinical evidence for the utility of PARPi in breast and ovarian cancers without BRCA mutations, but the underlying mechanism is not clear. Here, we report that the deubiquitylating enzyme USP15 affects cancer cell response to PARPi by regulating HR. Mechanistically, USP15 is recruited to DNA double-strand breaks (DSBs) by MDC1, which requires the FHA domain of MDC1 and phosphorylated Ser678 of USP15. Subsequently, USP15 deubiquitinates BARD1 BRCT domain, and promotes BARD1-HP1γ interaction, resulting in BRCA1/BARD1 retention at DSBs. USP15 knockout mice exhibit genomic instability in vivo. Furthermore, cancer-associated USP15 mutations, with decreased USP15-BARD1 interaction, increases PARP inhibitor sensitivity in cancer cells. Thus, our results identify a novel regulator of HR, which is a potential biomarker for therapeutic treatment using PARP inhibitors in cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.