Regenerative medicine has become one of the hottest research topics in medical science that provides a promising way for repairing tissue defects in the human body. Due to their excellent physicochemical properties, the application of 2D nanomaterials in regenerative medicine has gradually developed and has been attracting a wide range of research interests in recent years. In particular, graphene and its derivatives, black phosphorus, and transition metal dichalcogenides are applied in all the aspects of tissue engineering to replace or restore tissues. This review focuses on the latest advances in the application of 2D‐nanomaterial‐based hydrogels, nanosheets, or scaffolds that are engineered to repair skin, bone, and cartilage tissues. Reviews on other applications, including cardiac muscle regeneration, skeletal muscle repair, nerve regeneration, brain disease treatment, and spinal cord healing are also provided. The challenges and prospects of applications of 2D nanomaterials in regenerative medicine are discussed.
Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine.However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue Shanghui Huang, Xiangqian Hong, and Mingyi Zhao contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.