Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by farinfrared and Terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time-stamping of an ultrashort relativistic electron beam of which the energy is several orders of magnitude higher than photoelectrons. Such ability is especially important for MeV ultrafast electron diffraction (UED) applications where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression while the arrival time may fluctuate at a much larger time scale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with 6 fs (rms) pulse width has been determined with 1.5 fs (rms) accuracy. Furthermore, we have proposed and demonstrated a non-invasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards sub-10 fs frontier far beyond the ∼100 fs (rms) jitter.
With the development of high power microwave (HPM) technology, the power and pulse duration of the HPM source increase substantially, the breakdown of the dielectric window of the HPM source feed has been becoming the major factor of limiting the transmission and radiation of HPM. This paper presents an electrostatic particle-in-cell and Monte Carlo collisions method for simulating the breakdown on HPM dielectric surface and establishes a physical model of HPM dielectric surface breakdown involving outgassing. The breakdown process including the main physical mechanisms, such as the field emission, multipactor, outgassing, and collision of gas ionization, is simulated. The influence of outgassing on the dielectric window breakdown is studied by simulating the breakdown with different outgassing speeds. The similarity between the dc and HPM dielectric surface breakdown is discussed.
The effect of periodic rectangular grooves on vacuum multipactor has been theoretically and experimentally investigated. Dynamic calculation is applied to research the electron trajectory and impact energy under groove surface. Two-dimensional electromagnetic particle-in-cell simulation is used to analyze and compare multipactor scenario, statistic energy, and secondary emission yield on the flat surface with that on the corrugated surface. It has been found by computational and simulative analysis that grooved surface can explicitly suppress multipactor in the developmental stage of multipactor. S-band high power microwave (HPM) dielectric breakdown experiment under vacuum, with microsecond pulse length was conducted. It was confirmed by experiment that periodic grooves perpendicular to the major electric field can effectively increase transmitted power.
The mechanisms of nanosecond microwave-driven discharges near a dielectric/vacuum interface were studied by measuring the time- and space-dependent optical emissions and pulse waveforms. The experimental observations indicate multipactor and plasma developing in a thin layer of several millimeters above interface. The emission brightness increases significantly after main pulse, but emission region widens little. The mechanisms are studied by analysis and simulation, revealing intense ionization concentrated in a desorbed high-pressure layer, leading to a bright light layer above surface; the lower-voltage tail after main pulse contributes to heat electron energy tails closer to excitation cross section peaks, resulting in brighter emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.