Background: Current tobacco treatment guidelines have established the efficacy of available interventions, but they do not provide detailed guidance for common implementation questions frequently faced in the clinic. An evidence-based guideline was created that addresses several pharmacotherapy-initiation questions that routinely confront treatment teams. Methods: Individuals with diverse expertise related to smoking cessation were empaneled to prioritize questions and outcomes important to clinicians. An evidence-synthesis team conducted systematic reviews, which informed recommendations to answer the questions. The GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach was used to rate the certainty in the estimated effects and the strength of recommendations. Results: The guideline panel formulated five strong recommendations and two conditional recommendations regarding pharmacotherapy choices. Strong recommendations include using varenicline rather than a nicotine patch, using varenicline rather than bupropion, using varenicline rather than a nicotine patch in adults with a comorbid psychiatric condition, initiating varenicline in adults even if they are unready to quit, and using controller therapy for an extended treatment duration greater than 12 weeks. Conditional recommendations include combining a nicotine patch with varenicline rather than using varenicline alone and using varenicline rather than electronic cigarettes. Conclusions: Seven recommendations are provided, which represent simple practice changes that are likely to increase the effectiveness of tobacco-dependence pharmacotherapy.
The technological challenge imposed by the time resolution essential to achieve real-time molecular imaging calls for a new generation of ultrafast detectors. In this contribution, we demonstrate that CdSe-based semiconductor nanoplatelets can be combined with standard scintillator technology to achieve 80 ps coincidence time resolution on a hybrid functional pixel. This result contrasts with the fact that the overall detector light output is considerably affected by the loss of index-light-guiding. Here, we exploit the principle of 511 keV energy sharing between a high-Z, high stopping power bulk scintillator, and a nano-scintillator with sub-1 ns radiative recombination times, aiming at a breakthrough in the combined energy and time resolution performance. This proof-of-concept test opens the way to the design and study of larger size sensors using thin nanocomposite layers able to perform as efficient time taggers in a sampling detector geometry of new generation. npj 2D Materials and Applications (2019) 3:37; https://doi.
The irrelevant speech effect (ISE) refers to the impairment of visual information processing by background speech. Prior research on the ISE has focused on short-term memory for visually presented word lists. The present research extends this work by using measurements of eye movements to examine effects of irrelevant background speech during Chinese reading. This enabled an examination of the ISE for a language in which access to semantic representations is not strongly mediated by phonology. Participants read sentences while exposed to meaningful irrelevant speech, meaningless speech (scrambled meaningful speech) or silence. A target word of high or low lexical frequency was embedded in each sentence. The results show that meaningful, but not meaningless, background speech produced increased re-reading. In addition, the appearance of a normal word frequency effect, characterised by longer fixation times on low-compared to highfrequency words, was delayed when meaningful or meaningless speech was present in the background. These findings show that irrelevant background speech can disrupt normal processes of reading comprehension and, in addition, that background noise can interfere with the early processing of words. The findings add to evidence showing that normal reading processes can be disrupted by environmental noise such as irrelevant background speech.
Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10−4 μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH’s protective effects, suggesting that both pathways are necessary for α-MSH’s protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.
We explore the effect of shell thickness on the scintillation dynamics of CdS/CdSe/CdS spherical-quantum-well nanoscintillators under X-ray excitation, as compared to optical excitation at low and high powers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.