Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.
Aims/Introduction: Zinc-a2-glycoprotein (ZAG) is associated with the loss of adipose tissue in cancer cachexia, and has recently been proposed to be a candidate factor in the regulation of bodyweight. The aim of the study was to investigate the effects of ZAG on the proliferation and differentiation of 3T3-L1 preadipocytes. Materials and Methods: 3-(4,5-Dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative reverse transcription polymerase chain reaction and transient transfection methods were used to explore the action of ZAG. Results: Ectopic ZAG expression significantly stimulates 3T3-L1 cells proliferation in a dose-and time-dependent manner. The maximum influence of ZAG on proliferation was 1.43-fold higher than what was observed in control cells. This effect was observed 144 h after transfection with 0.16 lg of murine ZAG (mZAG) plasmid (P < 0.001). The intracellular lipids content in mZAG overexpressing cells were decreased as much as 37% when compared with the control cells after differentiation (P < 0.05, P < 0.01). The messenger ribonucleic acid levels of peroxisome proliferators-activated receptor-c (PPARc), CCAAT enhancer-binding protein-a (C/EBPa) and the critical lipogenic gene, fatty acid synthase (FAS), are also downregulated by up to 50% in fully differentiated ZAG-treated adipocytes. ZAG suppresses FAS messenger ribonucleic acid expression by reducing FAS promoter activity. Conclusions: Zinc-a2-glycoprotein stimulates the proliferation and inhibits the differentiation of 3T3-L1 murine preadipocytes. The inhibitory action of ZAG on cell differentiation might be a result of the attenuation of the expression of PPARc, C/EBPa and the lipogenic-specific enzyme FAS by reducing FAS promoter activity. (J Diabetes Invest,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.