Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene-based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π-π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state-ofthe-art synthetic strategies and properties of organic-functionalized graphene-based materials, and then, present the prospective applications of organic-functionalized graphene-based materials in sample preparation.
K E Y W O R D Sheavy metal adsorption, organic-functionalized graphene-based materials, organic pollutant degradation, sample preparation 1544
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.