Non-volatile computing-in-memory macros that are based on two-dimensional arrays of memristors are of use in the development of artificial intelligence edge devices. Scaling such systems to three-dimensional arrays could provide higher parallelism, capacity and density for the necessary vector–matrix multiplication operations. However, scaling to three dimensions is challenging due to manufacturing and device variability issues. Here we report a two-kilobit non-volatile computing-in-memory macro that is based on a three-dimensional vertical resistive random-access memory fabricated using a 55 nm complementary metal–oxide–semiconductor process. Our macro can perform 3D vector–matrix multiplication operations with an energy efficiency of 8.32 tera-operations per second per watt when the input, weight and output data are 8, 9 and 22 bits, respectively, and the bit density is 58.2 bit µm–2. We show that the macro offers more accurate brain MRI edge detection and improved inference accuracy on the CIFAR-10 dataset than conventional methods.
Radio frequency identification technology (RFID) has empowered a wide variety of automation industries. Aiming at the current light-weight RFID encryption scheme with limited information protection methods, combined with the physical unclonable function (PUF) composed of resistive random access memory (RRAM), a new type of high-efficiency reconfigurable strong PUF circuit structure is proposed in this paper. Experimental results show that the proposed PUF shows an almost ideal value (50%) of inter-chip hamming distance (HD) (µ/σ = 0.5001/0.0340) among 1000 PUF keys, and intra-chip HD results are very close to the ideal value (0). The bit error rate (BER) is as low as 3.8×10−6 across one million challenges. Based on the RRAM PUF, we propose and implement a light weight RFID authentication protocol. By virtue of RRAM’s model ability, the protocol replaces the One-way Hash Function with a response chain mutual encryption algorithm. The results of test and analysis show that the protocol can effectively resist multiple threats such as physical attacks, replay attacks, tracking attacks and asynchronous attacks, and has good stability. At the same time, based on RRAM’s unique resistance variability, PUF also has the advantage of being reconfigurable, providing good security for RFID tags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.