Background Aberrant expression of Aldo-Keto reductase family 1 member B10 (AKR1B10) was associated with tumor size and metastasis of breast cancer in our published preliminary studies. However, little is known about the detailed function and underlying molecular mechanism of AKR1B10 in the pathological process of breast cancer. Methods The relationship between elevated AKR1B10 expression and the overall survival and disease-free survival of breast cancer patients was analyzed by Kaplan–Meier Plotter database. Breast cancer cell lines overexpressing AKR1B10 (MCF-7/AKR1B10) and breast cancer cell lines with knockdown of AKR1B10 (BT-20/shAKR1B10) were constructed to analyze the impact of AKR1B10 expression on cell proliferation and migration of breast cancer. The expression levels of AKR1B10 were detected and compared in the breast cancer cell lines and tissues by RT-qPCR, western blot and immunohistochemistry. The proliferation of breast cancer cells was monitored by CCK8 cell proliferation assay, and the migration and invasion of breast cancer cells was observed by cell scratch test and transwell assay. The proliferation- and EMT-related proteins including cyclinD1, c-myc, Survivin, Twist, SNAI1, SLUG, ZEB1, E-cadherin, PI3K, p-PI3K, AKT, p-AKT, IKBα, p-IKBα, NF-κB p65, p-NF-κB p65 were detected by western blot in breast cancer cells. MCF-7/AKR1B10 cells were treated with LY294002, a PI3K inhibitor, to consider the impact of AKR1B10 overexpression on the PI3K/AKT/NF-κB signal cascade and the presence of NF-κB p65 in nuclear. In vivo tumor xenograft experiments were used to observe the role of AKR1B10 in breast cancer growth in mice. Results AKR1B10 expression was significantly greater in breast cancer tissue compared to paired non-cancerous tissue. The expression of AKR1B10 positively correlated with lymph node metastasis, tumor size, Ki67 expression, and p53 expression, but inversely correlated with overall and disease-free survival rates. Gene Ontology analysis showed that AKR1B10 activity contributes to cell proliferation. Overexpression of AKR1B10 facilitated the proliferation of MCF-7 cells, and induced the migration and invasion of MCF-7 cells in vitro in association with induction of epithelial-mesenchymal transition (EMT). Conversely, knockdown of AKR1B10 inhibited these effects in BT-20 cells. Mechanistically, AKR1B10 activated PI3K, AKT, and NF-κB p65, and induced nuclear translocation of NF-κB p65, and expression of proliferation-related proteins including c-myc, cyclinD1, Survivin, and EMT-related proteins including ZEB1, SLUG, Twist, but downregulated E-cadherin expression in MCF-7 cells. AKR1B10 silencing reduced the phosphorylation of PI3K, AKT, and NF-κB p65, the nuclear translocation of NF-κB p65, and the expression of proliferation- and migration-related proteins in BT-20 cells. LY294002, a PI3K inhibitor, attenuated the phosphorylation of PI3K, AKT, and NF-κB p65, and the nuclear translocation of NF-κB p65. In vivo tumor xenograft experiments confirmed that AKR1B10 promoted breast cancer growth in mice. Conclusions AKR1B10 promotes the proliferation, migration and invasion of breast cancer cells via the PI3K/AKT/NF-κB signaling pathway and represents a novel prognostic indicator as well as a potential therapeutic target in breast cancer.
BackgroudAberrant expression of Aldo-Keto reductase family 1 member B10 (AKR1B10) has been observed during the progression of some human carcinomas. However, the expression pattern and clinical relevance of AKR1B10 in breast cancer (BC) need clarification.MethodsThe relationship between the high expression of AKR1B10 and the overall prognosis and disease-free survival of breast cancer patients was analyzed by Kaplan-Meier Plotter database. Breast cancer cell lines MCF-7/AKR1B10 stably overexpressing AKR1B10 and breast cancer cell lines BT-20/shAKR1B10 that knock down AKR1B10 were constructed, respectively. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of AKR1B10 in breast cancer and its normal tissues. CCK8 cell proliferation assay and cell scratch test were used to detect the proliferation and migration of breast cancer cells. Western blot was used to detect the expression of proliferation-related proteins cyclinD1, c-myc, survivin and EMT-related proteins twist, snail, slug, ZEB1, E-cadherin, PI3K, p-PI3K, AKT, p-AKT, IKBα, p-IKBα, NF-κB p65, and p-NF-κB p65 proteins in breast cancer cells. The PI3K inhibitor LY94002 was used to treat MCF-7 cells to detect PI3K/AKT/NF-κB signal cascade protein Expression, and expression of NF-κB p65 in nucleoproteins and plasma proteins.ResultsIn this study, we found that AKR1B10 expression was higher in BC tissue compared to paired non-cancerous tissue. The expression of AKR1B10 positively correlated with lymph node metastasis, tumor size, Ki67 expression, and p53 expression, but inversely correlated with overall and disease-free survival rates. Gene Ontology (GO) analysis showed that AKR1B10 was closely related to cell proliferation. Overexpression of AKR1B10 facilitated proliferation and migration of BC cells in vitro in association with induction of epithelial-mesenchymal transition. Conversely, knockdown of AKR1B10 inhibited these effects. Mechanistically, silencing AKR1B10 reduced the phosphorylation of PI3K, AKT, and NF-κB p65, whereas AKR1B10 overexpression activated these signaling molecules. Indeed, PI3K inhibition attenuated NF-κB p65 nuclear localization.ConclusionsOur results demonstrate that AKR1B10 promotes proliferation and migration of BC cells and represents a novel prognostic indicator as well as a potential therapeutic target in BC.
Nasopharyngeal carcinoma (NPC) is one kind of human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. In spite of great innovations in radiation and chemotherapy treatments, the 5-year survival rate is not satisfactory. One of the main reasons is resistance to radiotherapy which leads to therapy failure and recurrence of NPC. The mechanism underlying remains to be fully elucidated. Aldo-keto reductase B10 (AKR1B10) plays a role in the formation and development of carcinomas. However, its role in resistance to radiotherapy of NPC is not clear. In this research, the relationships between AKR1B10 expression and the treatment effect of NPC patients, NPC cell survival, cell apoptosis, and DNA damage repair, as well as the effect and mechanism of AKR1B10 expression on NPC radioresistance were explored. A total of 58 paraffin tissues of NPC patients received radiotherapy were collected including 30 patients with radiosensitivity and 28 patients with radioresistance. The relationships between AKR1B10 expression and the treatment effect as well as clinical characteristics were analyzed by immuno-histochemical experiments, and the roles of AKR1B10 in cell survival, apoptosis and DNA damage repair were detected using the AKR1B10 overexpressed cell models. Furthermore the mechanism of AKR1B10 in NPC radioresistance was explored. Finally, the radioresistance effect of AKR1B10 expression was evaluated by the tumor xenograft model of nude mice and the method of radiotherapy. The results showed AKR1B10 expression level was correlated with radiotherapy resistance, and AKR1B10 overexpression promoted proliferation of NPC cells, reduced apoptosis and decreased cellular DNA damage after radiotherapy. The probable molecular mechanism is that AKR1B10 expression activated FFA/TLR4/NF-κB axis in NPC cells. This was validated by using the TLR4 inhibitor TAK242 to treat NPC cells with AKR1B10 expression, which reduced the phosphorylation of NF-κB. This study suggests that AKR1B10 can induce radiotherapy resistance and promote cell survival via FFA/TLR4/NF-κB axis in NPC, which may provide a novel target to fight against radiotherapy resistance of NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.