As one of the primary nodes in the flow of micro-plastics (MPs) in the environment, it is critical to examine and assess the Sewage Treatment, occurrence, and removal of MPs in waste treatment plant (WWTP). This research explored the shape, size, and composition of MPs at various stages of the WWTP process in the south of the city of Hefei, China, in dry and rainy weather conditions, as well as the removal effectiveness of MPs in a three-stage process. The collected MPs were quantitatively and qualitatively examined using an Osmosis electron microscope and micro-FTIR. The pollution risk of MPs in WWTP was assessed using the EU classification, labelling and packaging (CLP) standard and the pollution load index (PLI). The findings revealed that the average abundance of fibrous MPs was greatest in WWTP sewage and sludge, 49.3% and 39.7% in dry weather, and 50.1% and 43.2% in rainy weather, respectively. The average distribution of MPs in the 0–500 μm range was highest in WWTP wastewater and sludge, 64.9% and 60.4% in dry weather and 67.9% and 69.0% in rainy weather, respectively. Finally, the overall removal rate was 87.7% and 83.5%. At the same time, it has been demonstrated that MPs with varied compositions are strongly tied to human activities, and environmental conditions (such as rainy weather) also influence their source. In both dry and wet weather, the amount of polymers and the risk score were linked to the pollution risk of MPs in WWTP. In wet weather, the MPS pollution index was more variable. The pollution indices of MPs in row water and tail water were 2.40 and 2.46, respectively, which were heavily contaminated, and 1.0 and 1.2, which were moderately polluted. MPs in dewatered sludge had severely polluted indexes of 3.5 and 3.4, respectively. As a result, there is still MPs efflux or buildup in sludge during and after the WWTP process, which presents an ecological contamination concern.
Potassium glutamate has a very high value due to its excellent medical effects. An electrodialysis metathesis (EDM) method was developed to prepare high-value potassium glutamate from low-cost sodium glutamate. The effects of initial sodium glutamine and potassium sulfate concentrations and operating voltage on the performance of EDM were studied. The results show that the higher initial sodium glutamate concentration can increase the production capacity, but the energy consumption becomes higher, and the current efficiency reduces. The higher the initial potassium sulfate concentration, the better the performance of EDM. When the operating voltage is 15 V, the lowest energy consumption is 2.59 kWh·kg–1 C5H8KNO4. Under the best experimental conditions, the purity of potassium glutamate can reach 98.92%. The calculated cost for the process of preparing potassium glutamate by EDM is $0.394 kg–1 C5H8KNO4. Compared with the traditional preparation of potassium glutamate, EDM has obvious advantages in process flow, raw material use, product generation, and processing. Therefore, the preparation of potassium glutamate by EDM is a green and economical method.
This study aimed to investigate the distribution of microplastics (MPs) within the Shiwuli River in Hefei, a Chinese inland city. Water and sediment samples were collected during flood season (from May to September) and non-flood season (from October to April) at 10 representative points along the truck stream. The electron microscope, the laser direct infrared chemical imaging system (LDIR), and the scanning electron microscope (SEM) were used to observe and quantify the colour and shape of the MPs, to identify the number, size, and polymer composition of the MPs, and to observe the microstructures of typical MP particles, respectively. The polymer risk index (RI) model and the pollution load index (PLI) model were used to assess the polymer-related risks and the overall extent of MP pollution in the river, respectively. Analysis of MP abundance for different sampling points showed that the water of Shiwuli River had an average abundance of MPs of 8.4 ± 2.5 particles/L during the flood season and 5.8 ± 1.7 particles/L during the non-flood season; the sediment had an average abundance of MPs of 78.9 ± 8.3 particles/kg during the flood season and 63.9 ± 7.1 particles/kg during the non-flood season. The abundance of MPs of different points was investigated. Result show that the more abundances of MPs were found at confluences with tributaries (S4, S5, and S6), where they are also close to the residential and industrial development, while lower values were found in agricultural areas (S8) and wetland ecological regions (S9 and S10). In water, the maximum appeared at S5 with 21.7 ± 4.6 particles/L during the flood season and 15.9 ± 4.2 particles/L during the non-flood season, respectively; the minimum appeared at S9 with 1.8 ± 1.0 particles/L during the flood season and 2.2 ± 0.4 particles/L during the non-flood season, respectively. In sediment, the maximum appeared at S5 with 174.1 ± 10.1 particles/kg during the flood season and 143.6 ± 10.4 particles/kg during the non-flood season, respectively; the minimum appeared at S8 with 10.3 ± 2.8 particles/kg during the flood season and at S9 with 12.1 ± 3.2 particles/kg during the non-flood season, respectively. MP characteristics were also studied. Results show that the MPs mainly exhibited a fibroid morphology (27.90–34%), and red-coloured particles (19.10%) within the smaller size less than 500 μm (38.60%) were more prevalent. Additionally, the result of LDIR scanning shows that a total of eleven types of MP polymers were found in the river water and sediment, including acrylates (ACR), chlorinated polyethylene (CPE), ethylene vinyl acetate (EVA), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polyurethane (PU), polyvinylchloride (PVC), polyamide (PA), and silicon. The most common particle was PE (19.3–21.6%). Furthermore, the environmental risk assessment demonstrated that the PS polymer posed a Level-III risk in the water samples and a Level-II risk in the sediment samples from the Shiwuli River. The remaining polymer types exhibited Level-I risk. The PLIzone value for water was 2.24 during the flood season, indicating heavy pollution, and 1.66 during the non-flood season, indicating moderate pollution. Similarly, the PLIzone value for sediments was 2.34 during the flood season and 1.91 during the non-flood season, both suggesting a heavy pollution. These findings highlight the potential risk posed by MP pollution in the Shiwuli River to the quality of drinking water sources in Chaohu Lake in Hefei. They provide valuable insights into management, pollution control, and integrated management strategies pertaining to MPs in urban inland rivers in Hefei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.