It is a challenge to synthesize materials that possess biological tissue‐like properties: strain‐stiffening, robust yet compliant, sensitive, and water‐rich. Herein, a ferric ion‐induced salting out and coordination cross‐linking strategy is presented to create a hierarchical hydrogel network, including dipole–dipole interactions connected curved chains, acrylonitrile (AN)‐rich clusters, and homogeneous iron‐ligand interactions. The design allows the network to deform stress‐free under small strain by unfolding the curved segments with the elastic deformation of the AN‐rich clusters, and sequentially breaking the dipole–dipole interactions and iron‐ligand interactions from weak to strong ones under large strain. As a result, the hydrogel exhibits tissue‐like mechanical properties: low elastic modulus (0.06 MPa), high strength (1.4 MPa), high toughness (5.1 MJ m−3), intense strain‐stiffening capability (27.5 folds of stiffness enhancement), excellent self‐recovery ability and fatigue resistance. Moreover, the hydrogel exhibits high water content (≈84%), good biocompatibility and multi‐sensory capabilities to strain, pressure and hazardous chemicals stimuli. Therefore, this work offers a novel strategy to prepare hydrogel that can mimic the diverse functions of tissues, thereby expanding advanced applications of hydrogel in soft robotics, wearable devices, and biomedical engineering.
Estrogen combined with physical barrier therapy may be a prospective method to repair damaged endometrium and prevent postsurgical re-adhesion in the treatment of intrauterine adhesions (IUAs), but there lacks a...
Although hydrogel is a promising prosthesis implantation material for breast reconstruction, there is no suitable hydrogel with proper mechanical properties and good biocompatibility. Here, we report a series of compliant and tough poly (hydroxyethyl methacrylate) (PHEMA)-based hydrogels based on hydrogen bond-reinforcing interactions and phase separation inhibition by introducing maleic acid (MA) units. As a result, the tensile strength, fracture strain, tensile modulus, and toughness are up to 420 kPa, 293.4%, 770 kPa, and 0.86 MJ/m3, respectively. Moreover, the hydrogels possess good compliance, where the compression modulus is comparable to that of the silicone breast prosthesis (~23 kPa). Meanwhile, the hydrogels have an excellent self-recovery ability and fatigue resistance: the dissipative energy and elastic modulus recover almost completely after waiting for 2 min under cyclic compression, and the maximum strength remains essentially unchanged after 1000 cyclic compressions. More importantly, in vitro cellular experiments and in vivo animal experiments demonstrate that the hydrogels have good biocompatibility and stability. The biocompatible hydrogels with breast tissue-like mechanical properties hold great potential as an alternative implant material for reconstructing breasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.