The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.
Ring-opening polymerization of lactones is a versatile approach to generate well-defined functional polyesters. Typical ring-opening catalysts are subject to a trade-off between rate and selectivity. Here we describe an effective catalytic system combining alkoxides with thioureas that catalyses rapid and selective ring-opening polymerizations. Deprotonation of thioureas by sodium, potassium or imidazolium alkoxides generates a hydrogen-bonded alcohol adduct of the thiourea anion (thioimidate). The ring-opening polymerization of L-lactide mediated by these alcohol-bonded thioimidates yields highly isotactic polylactide with fast kinetics and living polymerization behaviour, as evidenced by narrow molecular weight distributions (M/M < 1.1), chain extension experiments and minimal transesterifications. Computational studies indicate a bifunctional catalytic mechanism whereby the thioimidate activates the carbonyl of the monomer and the alcohol initiator/chain end to effect the selective ring-opening of lactones and carbonates. The high selectivity of the catalyst towards monomer propagation over transesterification is attributed to a selective activation of monomer over polymer chains.
The key challenge for few-shot semantic segmentation (FSS) is how to tailor a desirable interaction among support and query features and/or their prototypes, under the episodic training scenario. Most existing FSS methods implement such support/query interactions by solely leveraging plain operations -e.g., cosine similarity and feature concatenation -for segmenting the query objects. However, these interaction approaches usually cannot well capture the intrinsic object details in the query images that are widely encountered in FSS, e.g., if the query object to be segmented has holes and slots, inaccurate segmentation almost always happens. To this end, we propose a dynamic prototype convolution network (DPCN) to fully capture the aforementioned intrinsic details for accurate FSS. Specifically, in DPCN, a dynamic convolution module (DCM) is firstly proposed to generate dynamic kernels from support foreground, then information interaction is achieved by convolution operations over query features using these kernels. Moreover, we equip DPCN with a support activation module (SAM) and a feature filtering module (FFM) to generate pseudo mask and filter out background information for the query images, respectively. SAM and FFM together can mine enriched context information from the query features. Our DPCN is also flexible and efficient under the k-shot FSS setting. Extensive experiments on PASCAL-5 i and COCO-20 i show that DPCN yields superior performances under both 1-shot and 5-shot settings.
The use of dithiolane-containing polymers to construct responsive and dynamic networks is an attractive strategy in material design. Here, we provide a detailed mechanistic study on the self-assembly and gelation behavior of a class of ABA triblock copolymers containing a central poly(ethylene oxide) block and terminal polycarbonate blocks with pendant 1,2-dithiolane functionalities. In aqueous solution, these amphiphilic block copolymers self-assemble into bridged flower micelles at high concentrations. The addition of a thiol initiates the reversible ring-opening polymerizations of dithiolanes in the micellar cores to induce the cross-linking and gelation of the micellar network. The properties of the resulting hydrogels depend sensitively on the structures of 1,2-dithiolanes. While the methyl asparagusic acid-derived hydrogels are highly dynamic, adaptable, and self-healing, those derived from lipoic acid are rigid, resilient, and brittle. The thermodynamics and kinetics of ring-opening polymerization of the two dithiolanes were investigated to provide important insights on the dramatically different properties of the hydrogels derived from the two different dithiolanes. The incorporation of both dithiolane monomers into the block copolymers provides a facile way to tailor the properties of these hydrogels.
Heterostructured materials are an emerging class of materials with superior performances that are unattainable by their conventional homogeneous counterparts. They consist of heterogeneous zones with dramatic (> 100%) variations in mechanical and/or physical properties. The interaction in these hetero-zones produces a synergistic effect where the integrated property exceeds the prediction by the rule-of-mixtures. The heterostructured materials field explores heterostructures to control defect distributions, long-range internal stresses, and nonlinear inter-zone interactions for unprecedented performances. This paper is aimed to provide perspectives on this novel field, describe the state-of-the-art of heterostructured materials, and identify and discuss key issues that deserve additional studies. IMPACT STATEMENT This paper delineates heterostructured materials, which are emerging as a new class of materials with unprecedented properties, new materials science and economic industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.