A strategy has been developed for the synthesis of thermoplastic elastomeric polypropylene based on the catalytic activity of the unbridged metallocene bis(2-phenylindenyl)zirconium dichloride [(2-PhInd)(2)ZrCl(2)]. This catalyst was designed to isomerize between achiral and chiral coordination geometries during the polymerization reaction to produce atactic-isotactic stereoblock polymers. The metallocene precursor (2-PhInd)(2)ZrCl(2) in the presence of methylaluminoxane polymerizes propylene to yield rubbery polypropylene. The isotacticity of the polymer, described by the isotactic pentad content, increases with increasing propylene pressure and decreasing polymerization temperature to produce polypropylenes with an isotactic pentad content ranging from 6.3 to 28.1 percent.
The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.
We show H2O2 is spontaneously produced from pure water by atomizing bulk water into microdroplets (1 μm to 20 µm in diameter). Production of H2O2, as assayed by H2O2-sensitve fluorescence dye peroxyfluor-1, increased with decreasing microdroplet size. Cleavage of 4-carboxyphenylboronic acid and conversion of phenylboronic acid to phenols in microdroplets further confirmed the generation of H2O2. The generated H2O2 concentration was ∼30 µM (∼1 part per million) as determined by titration with potassium titanium oxalate. Changing the spray gas to O2 or bubbling O2 decreased the yield of H2O2 in microdroplets, indicating that pure water microdroplets directly generate H2O2 without help from O2 either in air surrounding the droplet or dissolved in water. We consider various possible mechanisms for H2O2 formation and report a number of different experiments exploring this issue. We suggest that hydroxyl radical (OH) recombination is the most likely source, in which OH is generated by loss of an electron from OH− at or near the surface of the water microdroplet. This catalyst-free and voltage-free H2O2 production method provides innovative opportunities for green production of hydrogen peroxide.
Untersuchungen an neuen Metallocenkatalysatoren zur Polymerisation von α‐Olefinen haben gegenwärtig weitreichende Auswirkungen auf die Entwicklung neuer Materialien und auch auf unser Verständnis der grundlegenden Reaktionsmechanismen, die für das Wachstum von Polymerketten an einem Katalysatorzentrum und für deren Stereoregularität verantwortlich sind. Im Gegensatz zu heterogenen Ziegler‐Natta‐Katalysatoren erfolgt die Polymerisation mit einem homogenen Metallocenkatalysator im Prinzip an einheitlichen Metallzentren mit definierter Koordinationssphäre. Dies macht es möglich, die Struktur der Metallocenkomplexe mit den Eigenschaften des Polymers, beispielsweise Molekulargewicht, stereochemischer Mikrostruktur, Kristallisationsverhalten und mechanischen Eigenschaften, zu korrelieren. Mit homogenen Katalysatorsystemen können Regio‐ und Stereoregularitäten, Molekulargewichte, Molekulargewichte, Molekulargewichtsverteilungen und Einbauverhältnisse von Comonomeren wirksam kontrolliert werden. Diese Katalysatoren eröffnen neue Zugänge zur Homo‐ und Copolymerisation cyclischer Olefine, zur Cyclopolymerisation von Dienen und sogar zu funktionalisierten Polyolefinen und erweitern somit das Spektrum und die Vielseitigkeit technisch verfügbarer Polyolefin‐Materialien.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.