BackgroundXinjiang is one of the areas with the highest incidence of cervical cancer in China. Genetic variation in Human papillomavirus type 16 (HPV16) may increase the ability of the virus to mediate carcinogenesis and immune escape, which are risk factors for the progression of cervical cancer. We investigated polymorphism in HPV16 and the distribution of its sub-lineages in the region by analyzing the E6, E7 and long control region (LCR) gene sequences from women with HPV16-positive cervical samples in Xinjiang.MethodsA total of 138 cases of cervical lesions and squamous cell carcinoma with infection of HPV16 virus were collected. The E6 and E7 genes and LCR of HPV16 virus were sequenced and compared with the HPV16 European prototype reference and other HPV16 mutants for single nucleotide polymorphisms. Neighbor-joining phylogenetic trees were constructed using E6, E7 and LCR sequences.ResultsFourteen missense mutations were found in the E6 gene; the loci with the highest mutation frequency were T350G (36/75, 48%) and T178G (19/75, 25.3%). In the E7 gene, the locus with the highest mutation frequency was A647G (18/75, 24%). A total of 33 polymorphic sites were found in the LCR, of which T7447C (39/95, 40.1%) was the most frequent.ConclusionHPV16 in Xinjiang is mainly of the European variant, followed by the Asian variant type; no Africa 1, 2 or Asia–America variant types were found.
We investigated the infection status and genotype distribution of human papillomavirus (HPV) in women of different ages and various ethnic groups in the Yili region, Xinjiang, China. We checked the HPV genotypes of 3,445 samples of exfoliated cervical cells using the PCR–reverse dot blot method. The total infection rate of HPV was 25.60% (882/3,445). The ethnic stratification showed that the infection rates were 22.87% (196/857) in Uygur, 21.55% (122/566) in Kazak, and 27.89% (564/2,022) in Han individuals. The most prevalent high-risk genotypes were HPV16, HPV52, and HPV53 in Uygur and Kazak and HPV16, HPV52, and HPV58 in Han ethnic groups. The age stratification showed that the infection rates in Han, Uygur, and Kazak women were up to 40.9% (61/149) in those aged 26–30 years, 41.5% (22/53) in those over 61 years old, and 30.2% (29/96) in those 46–50 years old, respectively. Therefore, HPV infection and HPV genotype distribution varied among the different age groups of the three ethnic groups.
Background Xinjiang is one of the regions with a high incidence of cervical cancer, and the genetic variation of human papillomavirus may increase its ability to infect the human body and enhance virus-mediated immune escape ability. Methods Sanger sequencing of the HPV16 genome from 165 samples positive for HPV16 infection and phylogenetic analysis of the E1 and E2 genes revealed the gene polymorphism of HPV16 in Xinjiang. Results The results showed that there were 109 samples with variations in HPV16 E1, 48 sites with nucleotide variations (19 missense variations and 29 synonymous variations), and 91 samples with variations in HPV16 E2, 25 sites with nucleotide variations (20 missense variations and five synonymous variations). Conclusions From the phylogenetic tree results, 149 samples were of the European variant and 16 samples were of the Asian variant. No African or North American/Asian variant types were found.
Background To investigate the genotype distribution of human papillomavirus (HPV) in infected Uygur and Han women in Xinjiang, China; analyze the HPV16 E6 gene polymorphism site and relationship with the development of cervical cancer. Methods The HPV16 E6 sequence was analyzed using the European standard prototype to perform an evolutionary tree. HPV16 E6-T295/T350, G295/G350, and T295/G350 GV230 vectors were stably transfected into cervical cancer C33A cells to analyze the cell proliferation, migration and invasion, apoptosis by CCK8 and clonogenic assays, transwell and cell scratch assays, FACS experiments. Results The total HPV infection rate was 26.390% (760/2879), whereas the Uygur 22.87% (196/857) and the Han was 27.89% (564/2022) (P < 0.05). Among 110 mutations, 65 cases of E6 genes were mutated at nucleotide 350 (T350G) with the leucine changing to valine (L83V). Moreover, there were 7 cases of E6 gene mutated at nucleotide 295 (T295G) with aspartic changing to glutamic (D64E). When E6 vector(s) of mutations sites were transfected into C33A cells, they were found to promote cellular proliferation, migration, invasion, and inhibit apoptosis. T295/G350-E6 was significantly stronger than G295/G350 and T295/T350, G295/G350 was significantly stronger than T295/T350 (P < 0.05). The T295/G350 had the strongest effect on C33A cells and G295/G350 was significantly stronger than T295/T350 (P < 0.05). Conclusions The positive HPV infection rates differed between the Uygur and Han in Xinjiang, China, and the genotype distribution of infection was different. After transfecting C33A cells with different eukaryotic expression vectors, the T295/G350 mutation site promoted the proliferation, migration, and invasion of C33A cells to a greater extent than G295/G350; however, G295/G350 had a stronger effect than T295/T350.
Background This study aimed to determine whether ZNF582 gene methylation and tissue protein expression can be used as a tool with high sensitivity and specificity for cervical cancer screening. We analyzed the correlation between promoter methylation of the zinc finger protein 582 (ZNF582) gene and cervical cancer and high risk HPV16/18 infection. Methods Tissue samples of normal cervical or chronic cervicitis (n=51), CIN (cervical intraepithelial neoplasia) (n=35), and cervical carcinoma (n=68) were tested for HPV16/18 infection by polymerase chain reaction (PCR). We also detected the methylation status of the ZNF582 gene promoter in the same tissues by methylation specific PCR (MSP), then analyzed the correlation between ZNF582 promoter methylation and HPV16/18 infection. Immunohistochemistry was used to analyze ZNF582 gene expression in 152 cervical tissues. We detected ZNF582 mRNA expression in cervical tissues (including cancer and non-cancer) by real-time fluorescence quantitative PCR (qRT-PCR).Results Among 93 high grade cervical lesions (CINII and above) and cervical cancer samples, 57 cases were positive for HPV16/18 infection and 36 cases were negative. ZNF582 gene methylation occurred in 9 out of 51 cases in normal cervical tissues (17.6%), 16 of 35 cases in CIN tissues (45.7%), and 50 of 68 cases in cervical cancer (73.5%). The differences in methylation rate of the three groups were statistically significant (P<0.05). The ZNF582 methylation rate in the positive HPV16/18 infection group was 73.7%, while the negative group was 63.9%. Compared with normal tissues, ZNF582 protein was highly expressed in cervical cancer tissues, but mRNA expression was low.Conclusion While ZNF582 protein is highly expressed in cervical cancer tissues, it was not sufficient for use as a standard for cervical cancer staging. On the other hand, ZNF582 promoter methylation had high specificity and sensitivity in detecting CINII and highly diseased cervical lesions and could be used as a diagnostic marker for cervical cancer of women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.