Three-dimensional (3D) light-field displays (LFDs) suffer from a narrow viewing angle, limited depth range, and low spatial information capacity, which limit their diversified application. Because the number of pixels used to construct 3D spatial information is limited, increasing the viewing angle reduces the viewpoint density, which degrades the 3D performance. A solution based on a holographic functional screen (HFS) and a ladder-compound lenticular lens unit (LC-LLU) is proposed to increase the viewing angle while optimizing the viewpoint utilization. The LC-LLU and HFS are used to create 160 non-uniformly distributed viewpoints with low crosstalk, which increases the viewpoint density in the middle viewing zone and provides clear monocular depth cues. The corresponding coding method is presented as well. The optimized compound lenticular lens array can balance between suppressing aberration and improving displayed quality. The simulations and experiments show that the proposed 3D LFD can present natural 3D images with the right perception and occlusion relationship within a 65° viewing angle.
In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberration problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.