Coast-down characteristics are the crucial safety evaluation factors of nuclear reactor coolant pumps. The energy stored at the highest moment of inertia of the reactor coolant pump unit is utilized to maintain a normal coolant supply to the core of the cooling loop system for a short period of time during the coast-down transition. As a result of the high inertia moment of the rotor system, the unit requires a high reliability of the nuclear reactor coolant pump and consumes considerable energy in the start-up and normal operation. This paper considers the operational characteristics of the coast-down transition process based on the existing hydraulic model of the nuclear reactor coolant pump. With the implementation of an orthogonal test, the hydraulic performance of the nuclear reactor coolant pump was optimized, and the optimal combination of impeller geometrical parameters was selected using multivariate linear regression to prolong the coast-down time of the reactor coolant pump and to avoid serious nuclear accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.