Iron is essential for many biological processes. Inadequate or excess amount of body iron can result in various pathological consequences. The pathological roles of iron in cardiovascular disease (CVD) have been intensively studied for decades. Convincing data demonstrated a detrimental effect of iron deficiency in patients with heart failure and pulmonary arterial hypertension, but it remains unclear for the pathological roles of iron in other cardiovascular diseases. Meanwhile, ferroptosis is an iron-dependent cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in several CVDs, namely, cardiomyopathy, atherosclerotic cardiovascular disease, and myocardial ischemia/reperfusion injury. Iron chelation therapy seems to be an available strategy to ameliorate iron overload-related disorders. It is still a challenge to accurately clarify the pathological roles of iron in CVD and search for effective medical intervention. In this review, we aim to summarize the pathological roles of iron in CVD, and especially highlight the potential mechanism of ferroptosis in these diseases.
Background: Prevention and control of HIV/AIDS and other sexually transmitted diseases (STDs) are major public health priorities in China, but are influenced by the COVID-19 epidemic. In this study, we aimed to quantitatively explore the impact of the COVID-19 epidemic and its control measures on five major STD epidemics in China.Methods: A monthly number of newly reported cases of HIV/AIDS, hepatitis B and C, gonorrhea, and syphilis from January 2010 to December 2020 were extracted to establish autoregressive integrated moving average (ARIMA) models. Each month's absolute percentage error (APE) between the actual value and model-predicted value of each STD in 2020 was calculated to evaluate the influence of the COVID-19 epidemic on the STDs. Pearson correlation analysis was conducted to explore the confirmed COVID-19 case numbers and the COVID-19 control measures' correlations with the case numbers and the APEs of five STDs in 2020.Results: The actual number of five STDs in China was more than 50% lower than the predicted number in the early days of the COVID-19 epidemic, especially in February. Among them, the actual number of cases of hepatitis C, gonorrhea, and syphilis in February 2020 was more than 100% lower than the predicted number (APE was −102.3, −109.0, and −100.4%, respectively). After the sharply declines of STDs' reported cases in early 2020, the case numbers recovered quickly after March. The epidemic of STDs was negatively associated with the COVID-19 epidemic and its control measures, especially for restrictions on gathering size, close public transport, and stay-at-home requirements (p < 0.05).Conclusion: COVID-19 had a significant but temporary influence on the STD epidemic in China. The effective control of COVID-19 is vital for STD prevention. STD services need to be improved to prevent STDs from becoming a secluded corner in the shadow of COVID-19.
Light‐assisted antibacterial therapy is a promising alternative to antibiotic therapy due to the high antibacterial efficacy without bacterial resistance. Recent research has mainly focused on the use of near‐infrared light irradiation to kill bacteria by taking advantage of the synergistic effects rendered by hyperthermia and radical oxygen species. However, photocatalytic antibacterial therapy excited by visible light is more convenient and practical, especially for wounds. Herein, a visible light responsive organic‐inorganic hybrid of ZnTCPP/Ti3C2TX is designed and fabricated to treat bacterial infection with antibacterial efficiency of 99.86% and 99.92% within 10 min against Staphylococcus aureus and Escherichia coli, respectively. The porphyrin‐metal complex, ZnTCPP, is assembled on the surface of Ti3C2TX MXene to capture bacteria electrostatically and the Schottky junction formed between Ti3C2TX and ZnTCPP promotes visible light utilization, accelerates charge separation, and enhances the mobility of photogenerated charges, and finally increases the photocatalytic activity. As a result of the excellent bacteria capturing ability and photocatalytic antibacterial effects, ZnTCPP/Ti3C2TX exposed to visible light has excellent antibacterial properties in vitro and in vivo. Therefore, organic‐inorganic materials that have been demonstrated to possess good biocompatibility and enhance wound healing have large potential in bio‐photocatalysis, antibacterial therapy, as well as antibiotics‐free treatment of wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.