The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles (MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., pH-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.
Triple‐negative breast cancer (TNBC), one of the most aggressive types of breast cancer, currently lacks a targeted therapy and has a high clinical recurrence rate. The present study reports an engineered magnetic nanodrug based on Fe3O4 vortex nanorods coated with a macrophage membrane loaded with doxorubicin (DOX) and Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) siRNA. This novel nanodrug displays excellent tissue penetration and preferential tumor accumulation. More importantly, it significantly increases tumor suppression compared to chemotherapy, suggesting the synergistic activity of the combination of doxorubicin and EZH2‐inhibition. Importantly, owing to tumor‐targeted delivery, nanomedicine shows an excellent safety profile after systemic delivery, unlike conventional chemotherapy. In summary, chemotherapy and gene therapy are combined into a novel magnetic nanodrug carrying doxorubicin and EZH2 siRNA, which shows promising clinical application potential in TNBC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.