The integrated multi‐trophic aquaculture (IMTA) is a semi‐artificial habitat optimization ecosystem by co‐culture species from multiple trophic levels, in which farm waste produced by species of a higher trophic level is a nutrition source for species of a lower trophic level. However, in system construction it is essential to distinguish the roles of aquaculture organisms from different trophic levels and optimize the aquaculture capacity allocation. With this objective, a carrying capacity evaluation model for shrimp culture with integrated bioremediation techniques was developed, and the efficiency to repair the aquaculture pond environment was evaluated. Scenario simulations were conducted to assess the shrimp culture capacity for optimal economic and ecological benefits. The sensitivity analysis of the model indicated that changes in bivalve biomass had no significant impacts on the concentration of total nitrogen (TN) in the system, and macroalgae were more sensitive to the changes in TN than biofilters did. In conclusion, 1,500,000 Litopenaeus vannamei co‐cultured with 15,000 kg Crassostrea gigas and 1,125 kg Gracilaria lemaneiformis per hectare would bring maximum integrated benefit, and the use of integrated bioremediation techniques can make shrimp pond culture a virtuous cycle incorporating both production and restoration.
A novel approach was proposed to evaluate the potential risk of organic enrichment in marine aquaculture farms without obvious environmental degradation. The approach was based on historical environmental records preserved in sediment cores, and potential risk of organic enrichment can be effectively evaluated by comparing burial fluxes of marine organic carbon (OC) during times before and after large-scale aquaculture. A case study was conducted in Sanggou Bay. The change trends on burial fluxes of organic carbon in sediment over the past 150 years were rebuilt. OC burial fluxes have greatly increased since the beginning of large-scale aquaculture in 1980s, reaching 16.0~16.5 times higher than that before large-scale aquaculture. The results indicate that aquaculture activities have resulted in obvious accumulation of aquacultural organic matters, although sedimental environment has not degraded seriously. Besides, if the OC burial fluxes further increase to 3.5~7.0 times higher than that in present, sedimental environment may degrade obviously. Therefore, potential risks of organic enrichment still exist with aquaculture development in Sanggou Bay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.