Significance For more than three decades since the discovery of HIV-1, AIDS remains a major public health problem affecting greater than 35.3 million people worldwide. Current antiretroviral therapy has failed to eradicate HIV-1, partly due to the persistence of viral reservoirs. RNA-guided HIV-1 genome cleavage by the Cas9 technology has shown promising efficacy in disrupting the HIV-1 genome in latently infected cells, suppressing viral gene expression and replication, and immunizing uninfected cells against HIV-1 infection. These properties may provide a viable path toward a permanent cure for AIDS, and provide a means to vaccinate against other pathogenic viruses. Given the ease and rapidity of Cas9/guide RNA development, personalized therapies for individual patients with HIV-1 variants can be developed instantly.
CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.
FOXO1A and FOXO3A are two members of the FoxO family. FOXO3A has recently been linked to human longevity in Japanese, German and Italian populations. Here we tested the genetic contribution of FOXO1A and FOXO3A to the longevity phenotype in Han Chinese population. Six tagging SNPs from FOXO1A and FOXO3A were selected and genotyped in 1817 centenarians and younger individuals. Two SNPs of FOXO1A were found to be associated with longevity in women (P = 0.01-0.005), whereas all three SNPs of FOXO3A were associated with longevity in both genders (P = 0.005-0.001). One SNP from FOXO1A was found not to be associated with longevity. In haplotype association tests, the OR (95% CI) for haplotypes TTG and CCG of FOXO1A in association with female longevity were 0.72 (0.58-0.90) and 1.38 (1.08-1.76), P = 0.0033 and 0.0063, respectively. The haplotypes of FOXO3A were associated with longevity in men [GTC: OR (95% CI) = 0.67 (0.51-0.86), P = 0.0014; CGT: OR (95% CI) = 1.48 (1.12-1.94), P = 0.0035] and in women [GTC: OR (95% CI) = 0.75 (0.60-0.94), P = 0.0094; CGT: OR (95% CI) = 1.47 (1.16-1.86), P = 0.0009]. The haplotype association tests were validated by permutation analysis. The association of FOXO1A with female longevity was replicated in 700 centenarians and younger individuals that were sampled geographically different from the original population. Thus, we demonstrate that, unlike FOXO3A, FOXO1A is more closely associated with human female longevity, suggesting that the genetic contribution to longevity trait may be affected by genders.
Gastric cancer is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. To date, there is a lack of efficient therapeutic protocols for gastric cancer. Recent studies suggest that cancer stem cells (CSCs) are responsible for tumor initiation, invasion, metastasis, and resistance to anticancer therapies. Thus, therapies that target gastric CSCs are attractive. However, CSCs in human gastric adenocarcinoma (GAC) have not been described. Here, we identify CSCs in tumor tissues and peripheral blood from GAC patients. CSCs of human GAC (GCSCs) that are isolated from tumor tissues and peripheral blood of patients carried CD44 and CD54 surface markers, generated tumors that highly resemble the original human tumors when injected into immunodeficient mice, differentiated into gastric epithelial cells in vitro, and self-renewed in vivo and in vitro. Our findings suggest that effective therapeutic protocols must target GCSCs. The capture of GCSCs from the circulation of GAC patients also shows great potential for identification of a critical cell population potentially responsible for tumor metastasis, and provides an effective protocol for early diagnosis and longitudinal monitoring of gastric cancer.
C/EBPbeta is an intrinsically repressed transcription factor that regulates genes involved in differentiation, proliferation, tumorigenesis, and apoptosis. C/EBPbeta acts as a repressor that is turned into an activator by the Ras oncoprotein through phosphorylation of a MAPK site. C/EBPbeta activation is accompanied by a conformational change. Active and repressive C/EBPbeta interacts with multisubunit Mediator complexes through the CRSP130/Sur2 subunit. The CRSP130/Sur2 subunit is common to two distinct types of Mediator complexes, characterized by CRSP70 and CDK8 proteins as transcriptionally active and inactive Mediator, respectively. Knockdown of CRSP130/Sur2 prevents Mediator binding and transactivation through C/EBPbeta. Oncogenic Ras signaling or activating mutations in C/EBPbeta selects the transcriptionally active Mediator complex that also associates with RNA polymerase II. These results show that a Ras-induced structural alteration of C/EBPbeta determines differential gene activation through selective interaction with distinct Mediator complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.