This article presents a novel soft robotic gripper with a high payload capacity based on the layer jamming technology. Soft robots have a high adaptability, however, suffer a low payload capacity. To overcome these conflicting challenges, here we introduce a 3d printed multi-material gripper that integrates jamming layers for enhancing payload capacity. By inflating the internal air chamber with positive pressure, the finger can be actuated to a large bending angle for adapting complex shapes. Layers of jamming sheets are bounded on the finger structure and are then sealed inside a vacuum bag. When a high payload is desired, air inside the vacuum bag is drawn out and a negative air pressure is applied to the jamming layers, which leads to the gripper locked at the actuated shape. To evaluate the performance of the gripper, we conducted extensive tests including actuation, stiffness variation, typical payload capacity and adaptability. The results show that our gripper is not only highly adaptable just like most soft grippers, but more importantly capable of grasping heavy (about 6-10kg) objects comparable to rigid-body counterparts.
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by considering the effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 3-dimensional powertrain system, and the vibration isolation effectiveness significantly deteriorates at the mount resonance(s). It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate, tuning the frequency away from any engine excitation or natural frequencies. Further, internal mount resonances are utilized to improve vibration isolation over a narrow frequency range, using non-identical mounts to split mount resonance peaks. Then a computational model for a realistic drive unit (containing electric motor, power invertor, and gearbox) is considered. The mount resonance phenomenon is replicated in the computational model, and the effect on non-identical mounts is again examined. Finally, 3 and 4-point mounting schemes are compared, and their parameters (if selected properly) exhibit better vibration isolation over a tunable frequency range of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.