BackgroundIsepamicin is a weakly toxic but highly active aminoglycoside antibiotic derivative of gentamicin B. Gentamicin B is a naturally occurring minor component isolated from Micromonospora echinospora. 2ʹ-NH2-containing gentamicin C complex is a dominant compound produced by wild-type M. echinospora; by contrast, 2ʹ-OH-containing gentamicin B is produced as a minor component. However, the biosynthetic pathway of gentamicin B remains unclear. Considering that gentamicin B shares a unique C2ʹ hydroxyl group with kanamycin A, we aimed to design a new biosynthetic pathway of gentamicin B by combining twelve steps of gentamicin biosynthesis and two steps of kanamycin biosynthesis.ResultsWe blocked the biosynthetic pathway of byproducts and generated a strain overproducing JI-20A, which was used as a precursor of gentamicin B biosynthesis, by disrupting genK and genP. The amount of JI-20A produced in M. echinospora ∆K∆P reached 911 μg/ml, which was 14-fold higher than that of M. echinospora ∆P. The enzymes KanJ and KanK necessary to convert 2ʹ-NH2 into 2ʹ-OH from the kanamycin biosynthetic pathway were heterologously expressed in M. echinospora ΔKΔP to transform JI-20A into gentamicin B. The strain with kanJK under PermE* could produce 80 μg/ml of gentamicin B, which was tenfold higher than that of the wild-type strain. To enhance gentamicin B production, we employed different promoters and gene integration combinations. When a PhrdB promoter was used and kanJ and kanK were integrated in the genome through gene replacement, gentamicin B was generated as the major product with a maximum yield of 880 μg/ml.ConclusionWe constructed a new biosynthetic pathway of high-level gentamicin B production; in this pathway, most byproducts were removed. This method also provided novel insights into the biosynthesis of secondary metabolites via the combinatorial biosynthesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-015-0402-6) contains supplementary material, which is available to authorized users.
Gentamicin is a broad-spectrum aminoglycoside antibiotic widely used to treat life-threatening bacterial infections. The gentamicin C complex consists of gentamicin C1, gentamicin C1a, and epimers gentamicin C2 and gentamicin C2a. At present there is a generally accepted pathway of gentamicin biosynthesis, except for detailed understanding of the epimerization process involving gentamicins C2 and C2a. Here we have investigated the biosynthesis of these epimers. JI-20B-an intermediate in the gentamicin biosynthetic pathway-and its epimer JI-20Ba were generated by in-frame deletion within genP, which encodes a phosphotransferase that catalyzes the first step of 3',4'-bisdehydroxylation in gentamicin biosynthesis. GenB1 and GenB2 are aminotransferases with different substrate specificities and enantioselectivities. JI-20Ba, containing a 6'S chiral amine, a precursor of gentamicin C2a, was synthesized from G418 by GenQ/GenB1 through sequential oxidation/transamination at C-6'. GenQ/GenB2 catalyzed the synthesis of JI-20B, containing a 6'R chiral amine, a precursor of gentamicin C2, from G418. GenB2 catalyzed the epimerization of JI-20Ba/JI-20B and of gentamicins C2a/C2.
Background: New semi-synthetic aminoglycoside antibiotics generally use chemical modifications to avoid inactivity from pathogens. One of the most used modifications is 3′,4′-di-deoxygenation, which imitates the structure of gentamicin. However, the mechanism of di-deoxygenation has not been clearly elucidated. Results: Here, we report that the bifunctional enzyme, GenB4, catalyzes the last step of gentamicin 3′,4′-di-deoxygenation via reduction and transamination activities. Following disruption of genB4 in wild-type M. echinospora, its products accumulated in 6′-deamino-6′-oxoverdamicin (1), verdamicin C2a (2), and its epimer, verdamicin C2 (3). Following disruption of genB4 in M. echinospora ΔgenK, its products accumulated in sisomicin (4) and 6′-N-methylsisomicin (5, G-52). Following in vitro catalytic reactions, GenB4 transformed sisomicin (4) to gentamicin C1a (9) and transformed verdamicin C2a (2) and its epimer, verdamicin C2 (3), to gentamicin C2a (11) and gentamicin C2 (12), respectively. Conclusion: This finding indicated that in addition to its transamination activity, GenB4 exhibits specific 4′,5′ doublebond reducing activity and is responsible for the last step of gentamicin 3′,4′-di-deoxygenation. Taken together, we propose three new intermediates that may refine and supplement the specific biosynthetic pathway of gentamicin C components and lay the foundation for the complete elucidation of di-deoxygenation mechanisms.
Genetic engineering as an important approach to strain optimization has received wide recognition. Recent advances in the studies on the biosynthetic pathways and gene clusters of Streptomyces make stain optimization by genetic alteration possible. Kanamycin B is a key intermediate in the manufacture of the important medicines dibekacin and arbekacin, which belong to a class of antibiotics known as the aminoglycosides. Kanamycin could be prepared by carbamoylkanamycin B hydrolysis. However, carbamoylkanamycin B production in Streptomyces tenebrarius H6 is very low. Therefore, we tried to obtain high kanamycin B-producing strains that produced kanamycin B as a main component. In our work, aprD3 and aprD4 were clarified to be responsible for deoxygenation in apramycin and tobramycin biosynthesis. Based on this information, genes aprD3, aprQ (deduced apramycin biosynthetic gene), and aprD4 were disrupted to optimize the production of carbamoylkanamycin B. Compared with wild-type strain, mutant strain SPU313 (ΔaprD3, ΔaprQ, and ΔaprD4) produced carbamoylkanamycin B as a single antibiotic, whose production increased approximately fivefold. To construct a strain producing kanamycin B instead of carbamoylkanamycin B, the carbamoyl-transfer gene tacA was inactivated in strain SPU313. Mutant strain SPU314 (ΔaprD3, ΔaprQ, ΔaprD4, and ΔtacA) specifically produced kanamycin B, which was proven by LC-MS. This work demonstrated careful genetic engineering could significantly improve production and eliminate undesired products.
Complete and independent tetramycin and nystatin gene clusters containing varying lengths of type I polyketide synthase (PKS) genes were isolated from Streptomyces ahygroscopicus, a producer of tetramycin (a tetraene) in large amounts and nystatin A1 (a heptaene) in small amounts. Tetramycin was similar to pimaricin, and nystatin A1 was similar to amphotericin. All these polyene macrolide antibiotics possessed the same macrolactone ring biosynthesized from coenzyme A precursors by PKSs but had different number of atoms in the macrolactone ring and side groups. Because tetramycin and nystatin shared limited coenzyme A precursors in the same producer organism, blocking the consumption of precursors in tetramycin pathway may increase the coenzyme A pool. Thus, we genetically manipulated the tetramycin PKS to enhance nystatin production. The type I PKS ttmS1 gene mutant abolished production of tetramycin and had a beneficial effect on the production of nystatin A1. For the mutant, the yield of nystatin A1 was increased by 10-fold compared to that of the wild-type. Thus, deletion of the tetramycin pathway redirected precursor metabolic fluxes and provided an easy genetic approach to manipulate organisms and to increase production levels of a precise target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.