BackgroundIsepamicin is a weakly toxic but highly active aminoglycoside antibiotic derivative of gentamicin B. Gentamicin B is a naturally occurring minor component isolated from Micromonospora echinospora. 2ʹ-NH2-containing gentamicin C complex is a dominant compound produced by wild-type M. echinospora; by contrast, 2ʹ-OH-containing gentamicin B is produced as a minor component. However, the biosynthetic pathway of gentamicin B remains unclear. Considering that gentamicin B shares a unique C2ʹ hydroxyl group with kanamycin A, we aimed to design a new biosynthetic pathway of gentamicin B by combining twelve steps of gentamicin biosynthesis and two steps of kanamycin biosynthesis.ResultsWe blocked the biosynthetic pathway of byproducts and generated a strain overproducing JI-20A, which was used as a precursor of gentamicin B biosynthesis, by disrupting genK and genP. The amount of JI-20A produced in M. echinospora ∆K∆P reached 911 μg/ml, which was 14-fold higher than that of M. echinospora ∆P. The enzymes KanJ and KanK necessary to convert 2ʹ-NH2 into 2ʹ-OH from the kanamycin biosynthetic pathway were heterologously expressed in M. echinospora ΔKΔP to transform JI-20A into gentamicin B. The strain with kanJK under PermE* could produce 80 μg/ml of gentamicin B, which was tenfold higher than that of the wild-type strain. To enhance gentamicin B production, we employed different promoters and gene integration combinations. When a PhrdB promoter was used and kanJ and kanK were integrated in the genome through gene replacement, gentamicin B was generated as the major product with a maximum yield of 880 μg/ml.ConclusionWe constructed a new biosynthetic pathway of high-level gentamicin B production; in this pathway, most byproducts were removed. This method also provided novel insights into the biosynthesis of secondary metabolites via the combinatorial biosynthesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-015-0402-6) contains supplementary material, which is available to authorized users.
Three putative regulatory genes, namely ttmRI, ttmRII and ttmRIII, which are present in the tetramycin (ttm) biosynthetic gene cluster, were found in Streptomyces ahygroscopicus Disruption of ttmRI, ttmRII or ttmRIII reduced tetramycin production, and their complementation restored production to varying degrees. Gene expression analysis of the wild-type (WT) and mutant strains through reverse transcriptase-polymerase chain reaction (RT-PCR) of the ttm gene cluster showed that the expression levels of most of the biosynthetic genes were reduced in ΔttmRI, ΔttmRII and ΔttmRIII Electrophoretic mobility shift assays demonstrated that TtmRI, TtmRII and TtmRIII bound the promoters of several genes in the ttm gene cluster. This study found that these three proteins are a group of positive regulators that activate the transcription of the ttm gene cluster in S. ahygroscopicus In addition, ΔttmRII had a reduced degree of grey pigmentation. Thus, TtmRII has a pleiotropic regulatory function in the tetramycin biosynthetic pathway and in development.
G418, produced by fermentation of Micromonospora echinospora, is an aminoglycoside antibiotic commonly used in genetic selection and maintenance of eukaryotic cells. Besides G418, M. echinospora produces many G418 analogs. As a result, the G418 product always contains impurities such as gentamicin C1, C1a, C2, C2a, gentamicin A and gentamicin X2. These impurities are less potent but more toxic than G418, but the purification of G418 is difficult because it has similar properties to its impurities. G418 is an intermediate in the gentamicin biosynthesis pathway. From G418 the pathway proceeds via successive dehydrogenation and aminotransferation at the C-6' position to generate the gentamicin C complex, but genes responsible for these steps are still obscure. Through disruption of gacJ, which is deduced to encode a C-6' dehydrogenase, the biosynthetic impurities gentamicin C1, C1a, C2 and C2a were all removed, and G418 became the main product of the gacJ disruption strain. These results demonstrated that gacJ is in charge of conversion of the 6'-OH of G418 into 6'-NH2. Disruption of gacJ not only eliminates the impurities seen in the original strain but also improves G418 titers by 15-fold. G418 production was further improved by 26.6 % through traditional random mutagenesis. Through the use of combined traditional and recombinant genetic techniques, we produced a strain from which most impurities were removed and G418 production was improved by 19 fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.