In this study, NiCrBSi-30 wt.% TiN composite (NTC) coating was produced on carbon steel via plasma spraying, with NiCrBSi-30 wt.% WC composite (NWC) coating as the comparison object. The microstructure and phase constituents of the composite coatings were characterized using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) techniques, transmission electron microscopy (TEM) and x-ray diffraction (XRD). Atomic force microscopy (AFM) was used to measure electronic work functions. The microhardness and wear performance of coatings were also investigated. The average microhardness of the NTC and NWC coatings was 1000 HV and 850 HV, respectively. In addition, the NTC coating had a wear volume loss of 0.8118 mm3, less than 1.4772 mm3, the volume loss of the NWC coating. This was due to the presence of TiN in the form of nanograins in the composite coating and tighter binding to the matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.