The simple linear iterative clustering (SLIC) method is a recently proposed popular superpixel algorithm. However, this method may generate bad superpixels for synthetic aperture radar (SAR) images due to effects of speckle and the large dynamic range of pixel intensity. In this paper, an improved SLIC algorithm for SAR images is proposed. This algorithm exploits the likelihood information of SAR image pixel clusters. Specifically, a local clustering scheme combining intensity similarity with spatial proximity is proposed. Additionally, for post-processing, a local edge-evolving scheme that combines spatial context and likelihood information is introduced as an alternative to the connected components algorithm. To estimate the likelihood information of SAR image clusters, we incorporated a generalized gamma distribution (GГD). Finally, the superiority of the proposed algorithm was validated using both simulated and real-world SAR images.
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.