2D metal–organic frameworks are attractive filler in mixed matrix membranes (MMMs) due to the high aspect ratio and contact opportunity at the filler–polymer interface. However, their alignment in polymer matrix remains a challenge to fully play their functions. Herein, to our best knowledge, for the first time, the facile synthesis of KAUST‐7‐NH2 (KAUST, King University of Science and Technology) nanoplate is reported with 1D channels with an aspect ratio greater than 30. The nanoplates are incorporated and aligned in the 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride‐2,4‐diaminomesitylene (6FDA‐DAM) polymer matrix under the shear force with a filler loading up to 50 wt%. The large difference in adsorption abilities between CO2 and CH4 from the (001)‐oriented KAUST‐7‐NH2 nanoplate‐based MMMs and the favorable interaction at the filler–polymer interface contribute to the excellent CO2/CH4 separation performance. The resultant membranes show CO2/CH4 selectivity with 66.2% enhancement (surpassed 2008 Robeson upper bound), antiplasticization up to 17 bar, and long‐term stability up to 240 h indicating its good potential for natural gas treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.