Aiming at the low efficiency of manual measurement of threads and the lack of practicability in machine vision measurement before, online size measurement of threads at the end of sucker rods based on machine vision was studied. A robotic arm is used to carry an optical device to achieve high-quality image acquisition of threads. Based on the prior knowledge of the thread profile angle, the directional edge detection operator is customized to achieve the accurate detection of the left and right edges of the thread. Noise filtering, sorting, and left and right edge-matching algorithms based on connected domains are developed to eliminate the interference effects of electrostatic dust and oil pollution in online measurement, and the dimension of thread profile angles, pitches, major diameters, and minor diameters can be precisely calculated. The experimental results show that the screw thread parameter measurement time is about 0.13 s; the maximum and minimum average errors of the thread angles are 0.011° and 0.632°, respectively; and the total average deviation is less than 0.08°. For the screw thread pitch, major diameter, minor diameter, and pitch diameter parameter measurement, the deviation of the measurement results between the proposed method and the universal tool microscope (UTM) method is less than 10 μm. It fully proves the effectiveness and accuracy of the method in this paper and, at the same time, shows that the method has good real-time performance and high application significance, which lays a good foundation for the subsequent online thread measurement.
At present, there is a problem that the measurement accuracy and measurement range cannot be balanced in the measurement of shaft diameter by the machine vision method. In this paper, we propose a large-scale shaft diameter precision measurement method based on a dual camera measurement system. The unified world coordinate system of the two cameras is established by analyzing the dual camera imaging model and obtaining the measurement formula. In order to verify the validity of the proposed method, two black blocks in the calibration plate with a known center distance of 100 mm were measured. The mean value was 100.001 mm and the standard deviation was 0.00039 in 10 measurements. Finally, the proposed system was applied to the diameter measurement of a complexed crankshaft. The mean μ95 values of CMM and the proposed method were ±1.02 μm and ±1.07 μm, respectively, indicating that the measurement accuracy of the proposed method is roughly equal to the CMM.
Assessment and reporting of skills is a central feature of many digital learning platforms. With students often using multiple platforms, cross-platform assessment has emerged as a new challenge. While technologies such as Learning Tools Interoperability (LTI) have enabled communication between platforms, reconciling the different skill taxonomies they employ has not been solved at scale. In this paper, we introduce and evaluate a methodology for finding and linking equivalent skills between platforms by utilizing problem content as well as the platform's clickstream data. We propose six models to represent skills as continuous real-valued vectors, and leverage machine translation to map between skill spaces. The methods are tested on three digital learning platforms: ASSISTments, Khan Academy, and Cognitive Tutor. Our results demonstrate reasonable accuracy in skill equivalency prediction from a fine-grained taxonomy to a coarse-grained one, achieving an average recall@5 of 0.8 between the three platforms. Our skill translation approach has implications for aiding in the tedious, manual process of taxonomy to taxonomy mapping work, also called crosswalks, within the tutoring as well as standardized testing worlds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.