The effect of annealing temperature on the microstructure, phase constituents and mechanical properties of Al0.5CoCrFeMoxNi high-entropy complex alloys has been investigated at a fixed annealing time (10 h). The 600 °C-annealing has no obvious effect on their microstructures, while the annealing at 800–1200 °C enhances the precipitation of (Al,Ni)-rich ordered BCC phase or/and (Cr,Mo)-rich σ phase, and thereby greatly affects the microstructure and mechanical properties of the alloys. All the annealed Al0.5CoCrFeNi alloys are composed of FCC and (Al,Ni)-rich ordered BCC phases; the phase constituent of the Al0.5CoCrFeMo0.1Ni alloy changes from FCC + BCC (600 °C) to FCC + BCC + σ (800 °C) and then to FCC + BCC (1100 °C); the phase constituents of the Al0.5CoCrFeMo0.2Ni and Al0.5CoCrFeMo0.3Ni alloys change from FCC + BCC + σ to FCC + BCC with the annealing temperature rising from 600 to 1200 °C; while all the annealed Al0.5CoCrFeMo0.4Ni and Al0.5CoCrFeMo0.5Ni alloys consist of FCC, BCC and σ phases. The phase constituents of most of the alloys investigated are in good agreement with the calculated results from Thermo-Calc program. The alloys annealed at 800 °C under current investigation conditionshave relative fine precipitations and microstructure, and thereby higher hardness and yield stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.