The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.
Tin perovskite is rising as a promising candidate to address the toxicity and theoretical efficiency limitation of lead perovskite. However, the voltage and efficiency of tin perovskite solar cells are much lower than lead counterparts. Herein, indene-C 60 bisadduct with higher energy level is utilized as an electron transporting material for tin perovskite solar cells. It suppresses carrier concentration increase caused by remote doping, which significantly reduces interface carriers recombination. Moreover, indene-C 60 bisadduct increases the maximum attainable photovoltage of the device. As a result, the use of indene-C 60 bisadduct brings unprecedentedly high voltage of 0.94 V, which is over 50% higher than that of 0.6 V for device based on [6,6]-phenyl-C61-butyric acid methyl ester. The device shows a record power conversion efficiency of 12.4% reproduced in an accredited independent photovoltaic testing lab.
Development of tin halide perovskites is limited by the extremely poor stability and high background carrier density. Here, based on a pseudohalogen ''catalyst,'' we fabricated a Sn-based hierarchy structure perovskite in a one-step process, comprising highly parallel-orientation 2D PEA 2 SnI 4 on the surface of 3D FASnI 3 . The hierarchy structure delivers significantly enhanced stability and oxidation resistance in air atmosphere. We then explored hierarchy structure perovskite films in planar structure solar cells and achieved a PCE up to 9.41%. HIGHLIGHTS 2D-quasi-2D-3D hierarchy structure perovskite is fabricated for the first time Removable pseudohalogen acts as a regulator to manipulate tin perovskite structureThe hierarchy structure effectively resists oxidation and increases carrier mobilityThe hierarchy structure tin perovskite solar cells achieve a record PCE of 9.41% Wang et al., Joule SUMMARYThe power conversion efficiency (PCE) of tin perovskite solar cells is impeded by the extremely poor resistance to oxidation and high density of intrinsic Sn vacancies. Herein, we grow a 2D-quasi-2D-3D Sn perovskite film using removable pseudohalogen NH 4 SCN as a structure regulator. This hierarchy structure remarkably enhances air stability resulting from the parallel growth of 2D PEA 2 SnI 4 as the surface layer. We then explore the hierarchy structure perovskite films in planar structural solar cells, which generate a PCE up to 9.41%. The device retains 90% of its initial performance for almost 600 hr. Our results suggest that adding removable NH 4 SCN in a perovskite precursor can significantly improve the stability and photovoltaic performance of Sn perovskite. This finding provides a powerful strategy to manipulate the structure of low-dimensional perovskite in order to enhance the performance of perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.