Millions of workers in China rely on respirators and other personal protective equipment to reduce the risk of injury and occupational diseases. However, it has been >25 years since the first survey of facial dimensions for Chinese adults was published, and it has never been completely updated. Thus, an anthropometric survey of Chinese civilian workers was conducted in 2006. A total of 3000 subjects (2026 males and 974 females) between the ages of 18 and 66 years old was measured using traditional techniques. Nineteen facial dimensions, height, weight, neck circumference, waist circumference and hip circumference were measured. A stratified sampling plan of three age strata and two gender strata was implemented. Linear regression analysis was used to evaluate the possible effects of gender, age, occupation and body size on facial dimensions. The regression coefficients for gender indicated that for all anthropometric dimensions, males had significantly larger measurements than females. As body mass index increased, dimensions measured increased significantly. Construction workers and miners had significantly smaller measurements than individuals employed in healthcare or manufacturing for a majority of dimensions. Five representative indexes of facial dimension (face length, face width, nose protrusion, bigonial breadth and nasal root breadth) were selected based on correlation and cluster analysis of all dimensions. Through comparison with the facial dimensions of American subjects, this study indicated that Chinese civilian workers have shorter face length, smaller nose protrusion, larger face width and longer lip length.
Compared with traditional rigid robots, soft robots have high flexibility, low stiffness, and adaptability to unstructured environments, and as such have great application potential in scenarios such as fragile object grasping and human machine interaction. Similar to biological muscles, the soft actuator is one of the most important parts in soft robots, and can be activated by fluid, thermal, electricity, magnet, light, humidity, and chemical reaction. In this paper, existing principles and methods for actuation are reviewed. We summarize the preprogrammed and reprogrammed structures under different stimuli to achieve motions such as bending, linear, torsional, spiral. and composite motions, which could provide a guideline for new soft actuator designs. In addition, predominant manufacturing methods and application fields are introduced, and the challenges and future directions of soft actuators are discussed.
A braking intention identification method based on empirical mode decomposition (EMD) algorithm and entropy theory for electric vehicles is proposed. EMD algorithm is given to decompose nonstationary brake pedal signal to stationary intrinsic mode function (IMF), which is the base of data mining. After that, entropy theory is used to extract brake pedal signal features. A braking intention identification model is built based on fuzzy c-means clustering algorithm. The hardware and software for braking intention identification system based on this method is set up to do offline and real-time experiments. The results show that the identification method proposed in this paper has good real-time quality and can distinguish moderate braking intention and gentle braking intention better.
A hydromechanical variable transmission (HMT) has advantages of continuous variation and high efficiency. So it is one of the ideal transmissions of heavy vehicles. The continuous speed varying process involves speed governing in range and range shift. Integrated control strategy of the HMT is proposed in this paper. The algorithm of the asymmetric saturated incremental proportional integral derivative (PID) speed control strategy in range and range shift conditions are derived. And this paper presents the range shift logic and range shift control strategies. A controller model is built in Matlab Simulink and cosimulated with the model of vehicle equipped with a two-range HMT. The HMT prototype hardware-in-the-loop simulation (HILS) platform of the integrated control strategy is built. The HILS results show that the range shift process is smooth and speed fluctuation does not happen. In the throttle stable stage, the engine speed is adjusted to the near optimal speed, and its change rules are in accordance with simulation results. The integrated control strategy is reasonable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.