In this paper, we investigate local and nonlocal reductions of a discrete negative order Ablowitz–Kaup–Newell–Segur equation. By the bilinearization reduction method, we construct exact solutions in double Casoratian form to the reduced nonlocal discrete sine‐Gordon equations. Then, nonlocal semidiscrete sine‐Gordon equations and their solutions are obtained through the continuum limits. The dynamics of soliton solutions are analyzed and illustrated by asymptotic analysis. The research ideas and methods in this paper can be generalized to other nonlocal discrete integrable systems.
Изучаются локальная и нелокальная комплексные редукции дискретного уравнения Абловица-Каупа-Ньюэлла-Сигура отрицательного порядка. Для получающихся в результате редукции локального и нелокального комплексных дискретных уравнений синус-Гордона построены решения типа матрицы Коши, в том числе солитонные решения и решения типа жордановой матрицы. Проанализирована и показана на графиках динамика односолитонного решения. Обсуждаются непрерывные пределы локального и нелокального комплексных дискретных уравнений синус-Гордона.
In this paper, local and nonlocal complex reduction of a discrete and a semi-discrete negative order Ablowitz-Kaup-Newell-Segur equations is studied. Cauchy matrix type solutions, including soliton solutions and Jordan-block solutions, for the resulting local and nonlocal complex discrete and semi-discrete sine-Gordon equations are constructed. Dynamics of 1-soliton solution are analyzed and illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.